日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線C:數(shù)學(xué)公式(a>0,b>0)
          (1)若a=4,b=3,過點P(6,3)的動直線l與雙曲線C相交與不同兩點A,B時,在線段AB上取點Q,滿足數(shù)學(xué)公式,求證點Q總在某定直線上.
          (2)在雙曲線C:數(shù)學(xué)公式(a>0,b>0),過雙曲線外一點P(m,n)的動直線l與雙曲線C相交與不同兩點A,B時,在線段AB上取點Q,滿足數(shù)學(xué)公式,則點Q在哪條定直線上?
          (3)試將該結(jié)論推廣至其它圓錐曲線上,證明其中的一種情況,并猜想該直線具有的性質(zhì).

          解:(1)由題意得雙曲線C的方程為

          設(shè)點Q、A、B的坐標(biāo)分別為(x,y),(x1,y1),(x2,y2).
          由題設(shè)知 均不為零,記 ,則λ>0且λ≠1
          又A,P,B,Q四點共線,從而
          于是 ,,
          從而 ①,②,
          又點A、B在橢圓C上,即 ③, ④,
          ①×9-②×16并結(jié)合③、④得9x-8y=24,
          即點Q(x,y)總在定直線9x-8y=24上.
          (2)類似于(1)可得結(jié)論:在雙曲線C:(a>0,b>0),過雙曲線外一點P(m,n)的動直線l與雙曲線C相交與不同兩點A,B時,在線段AB上取點Q,滿足
          得出點Q在定直線b2mx-a2ny=a2b2上;
          (3)該結(jié)論推廣至其它橢圓上,有:
          在橢圓C:(a>0,b>0),過橢圓外一點P(m,n)的動直線l與橢圓C相交與不同兩點A,B時,在線段AB上取點Q,滿足,得出點Q在定直線b2mx+a2ny=a2b2上;
          類似于(1)得:
          于是 ,,
          從而 ①,②,
          又點A、B在橢圓C上,即 ③, ④,
          ①×b2+②×a2并結(jié)合③、④得b2mx+a2ny=a2b2,
          即點Q(x,y)總在定直線b2mx+a2ny=a2b2上.
          分析:(1)a=4,b=3,可得雙曲線的方程.欲證點Q總在某定直線上,所以先設(shè)點Q的坐標(biāo)為變量(x,y),點A、B的坐標(biāo)分別為參數(shù)(x1,y1)、(x2,y2),然后根據(jù)已知條件可變形得 ,設(shè)其比值為λ則有 ,此時利用定比分點定理可得A、B、P三點橫坐標(biāo)關(guān)系及縱坐標(biāo)關(guān)系,同時可得A、B、Q三點橫坐標(biāo)關(guān)系及縱坐標(biāo)關(guān)系,又因為點A、B的坐標(biāo)滿足雙曲線方程,再利用已得關(guān)系式可整體替換,同時消去參數(shù)λ,最后得到變量x、y的關(guān)系式,則問題得證.
          (2)類似于(1)可得結(jié)論:在雙曲線C:(a>0,b>0),過雙曲線外一點P(m,n)的動直線l與雙曲線C相交與不同兩點A,B時,在線段AB上取點Q,滿足,得出點Q在那條定直線上;
          (3)該結(jié)論推廣至其它橢圓上,有:在橢圓C:(a>0,b>0),過橢圓外一點P(m,n)的動直線l與橢圓C相交與不同兩點A,B時,在線段AB上取點Q,滿足,得出點Q在定直線b2mx+a2ny=a2b2上.
          點評:本題綜合考查雙曲線性質(zhì)與定比分點定理,同時考查構(gòu)造消元處理方程組的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年濰坊市六模)(12分)已知雙曲線Ca>0,b>0),B是右頂點,F是右焦點,點Ax軸正半軸上,且滿足、、成等比數(shù)列,過F作雙曲線C在第一、第三象限的漸近線的垂線l,垂足為P

           。1)求證:

           。2)若l與雙曲線C的左、右兩支分別相交于點D、E,求雙曲線C的離心率e的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線C:=1(a>0,b>0),B是右頂點,F(xiàn)是右焦點,點A在x軸的正半軸,且滿足||、||、||成等比數(shù)列,過F作雙曲線C在第一、三象限的漸近線的垂線l,垂足為P.

          (1)求證:·=·

          (2)若l與雙曲線C的左、右兩支分別交于點D、E,求雙曲線C的離心率e的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線C:=1(a>0,b>0),B是右頂點,F(xiàn)是右焦點,點A在x軸正半軸上,且||、||、||成等比數(shù)列,過F作雙曲線C在第一、三象限的漸近線的垂線l,垂足為P.

          (1)求證:·=·;

          (2)若l與雙曲線C的左、右兩支分別相交于點D、E,求雙曲線離心率e的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(全國大綱卷解析版) 題型:解答題

          已知雙曲線C:(a>0,b>0)的左、右焦點分別為,離心率為3,直線y=2與C的兩個交點間的距離為.

          (Ⅰ)求a,b;

          (Ⅱ)設(shè)過的直線l與C的左、右兩支分別交于A、B兩點,且,證明:、、成等比數(shù)列.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚州中學(xué)高三(上)周練數(shù)學(xué)試卷(12.22)(解析版) 題型:填空題

          在平面直角坐標(biāo)系xOy中,已知雙曲線C:(a>0)的一條漸近線與直線l:2x-y+1=0垂直,則實數(shù)a=   

          查看答案和解析>>

          同步練習(xí)冊答案