日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.

          (1)若直線與曲線交于兩點(diǎn),求的值;

          (2)求曲線的內(nèi)接矩形的周長的最大值.

          【答案】(1)2;(2)16.

          【解析】

          試題分析:(1)求出曲線的普通方程和焦點(diǎn)坐標(biāo),將直線的參數(shù)方程代入曲線的普通方程,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義,即可得到結(jié)果;(2)用橢圓參數(shù)方程設(shè)矩形的四點(diǎn),面積用三角函數(shù)表示,再利用三角函數(shù)的有界性求解.

          試題解析:(1)已知曲線 的標(biāo)準(zhǔn)方程為,則其左焦點(diǎn)為

          ,將直線的參數(shù)方程與曲線聯(lián)立,

          ,則

          (2)由曲線的方程為,可設(shè)曲線上的定點(diǎn),

          則以為頂點(diǎn)的內(nèi)接矩形周長為,

          因此該內(nèi)接矩形周長的最大值為16

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),且函數(shù)圖象的對(duì)稱中心到對(duì)稱軸的最小距離為,當(dāng)時(shí), 的最大值為1

          求函數(shù)的解析式;

          )將函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若上恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校高一(1)班的一次數(shù)學(xué)測(cè)試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.

          (1)求分?jǐn)?shù)在的頻率及全班人數(shù);

          (2)求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;

          (3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知直線的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.

          1若直線與曲線交于兩點(diǎn),求的值;

          2求曲線的內(nèi)接矩形的周長的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列判斷:①一條直線和一點(diǎn)確定一個(gè)平面;②兩條直線確定一個(gè)平面;③三角形和梯形一定是平面圖形;④三條互相平行的直線一定共面其中正確的是_______.(寫出所有正確判斷的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖a,在直角梯形ABCD中,ADC=90°,CDAB,AB=8,AD=CD=4,將ADC沿AC折起,使平面ADC平面ABC,得到幾何體D-ABC,如圖b所示.

          1求證:BC平面ACD;

          2求幾何體D-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點(diǎn)數(shù),分別記為

          (1)若記“”為事件,求事件發(fā)生的概率;

          (2)若記“”為事件,求事件發(fā)生的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正方形的邊長為1,弧是以點(diǎn)為圓心的圓弧.

          (1)在正方形內(nèi)任取一點(diǎn),求事件“”的概率;

          (2)用大豆將正方形均勻鋪滿,經(jīng)清點(diǎn),發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請(qǐng)據(jù)此估計(jì)圓周率的近似值(精確到).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系直線的方程是,的參數(shù)方程是為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系

          (1)分別求直線與圓的極坐標(biāo)方程;

          (2)射線)與圓的交點(diǎn)為兩點(diǎn),與直線交于點(diǎn),射線與圓交于,兩點(diǎn),與直線交于點(diǎn),的最大值

          查看答案和解析>>

          同步練習(xí)冊(cè)答案