【題目】已知下圖是四面體及其三視圖,
是
的中點(diǎn),
是
的中點(diǎn).
(1)求四面體的體積;
(2)求與平面
所成的角;
【答案】(1);(2)
.
【解析】
(1)由三視圖得出四面體的底面是直角三角形,且可得出兩直角邊的邊長(zhǎng),從而求出底面三角形的面積,由三視圖可得出該四面體的高,再利用錐體的體積公式可求出四面體
的體積;
(2)通過(guò)得出點(diǎn)
到平面
的距離,利用直線與平面所成角的定義得出直線
與平面
所成角的正弦值,從而可求出直線
與平面
所成角的大小.
(1)由三視圖可知,四面體是直三棱錐,且底面
是以
為直角的直角三角形,
,則
的面積為
,
由三視圖可知,底面
,且
,
因此,四面體的體積為
;
(2)是
的中點(diǎn),
為
的中點(diǎn),
到平面
的距離為
,
,
,
由勾股定理,
,
的
邊上的高為
,
,
,
設(shè)點(diǎn)到平面
的距離為
,則
,
又,
,解得
,
連接,則
,
,
設(shè)與平面
所成的角為
,則
,
與平面
所成的角為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)拋物線的準(zhǔn)線
與
軸交于橢圓
的右焦點(diǎn)
為
的左焦點(diǎn).橢圓的離心率為
,拋物線
與橢圓
交于
軸上方一點(diǎn)
,連接
并延長(zhǎng)其交
于點(diǎn)
,
為
上一動(dòng)點(diǎn),且在
之間移動(dòng).
(1)當(dāng)取最小值時(shí),求
和
的方程;
(2)若的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)
面積取最大值時(shí),求面積最大值以及此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù),
為直線
的傾斜角),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線的直角坐標(biāo)方程,并求
時(shí)直線
的普通方程;
(2)直線和曲線
交于兩點(diǎn)
,點(diǎn)
的直角坐標(biāo)為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國(guó)歷史上一部影響巨大的著作.卷八中第33問(wèn):“今有三角果一垛,底闊每面七個(gè).問(wèn)該若干?”如圖是解決該問(wèn)題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )
A.28B.56C.84D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
(
)的左右兩個(gè)焦點(diǎn)分別是
、
,
在橢圓
上運(yùn)動(dòng).
(1)若對(duì)有最大值為120°,求出
、
的關(guān)系式;
(2)若點(diǎn)是在橢圓上位于第一象限的點(diǎn),過(guò)點(diǎn)
作直線
的垂線
,過(guò)
作直線
的垂線
,若直線
、
的交點(diǎn)
在橢圓
上,求點(diǎn)
的坐標(biāo);
(3)若設(shè),在(2)成立的條件下,試求出
、
兩點(diǎn)間距離的函數(shù)
,并求出
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為
,(
為參數(shù)).以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出直線的極坐標(biāo)方程與曲線
的直角坐標(biāo)方程;
(2)已知與直線平行的直線
過(guò)點(diǎn)
,且與曲線
交于
兩點(diǎn),試求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為
,且
,若
,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個(gè)人玩這個(gè)游戲,得出他們“心有靈犀”的概率為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某海域有兩個(gè)島嶼,
島在
島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線
,曾有漁船在距
島、
島距離和為8海里處發(fā)出過(guò)魚群。以
所在直線為
軸,
的垂直平分線為
軸建立平面直角坐標(biāo)系.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)某日,研究人員在兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),
兩島收到魚群在
處反射信號(hào)的時(shí)間比為
,問(wèn)你能否確定
處的位置(即點(diǎn)
的坐標(biāo))?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com