日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1)設(shè)曲線在原點處切線與直線垂直,則a=______.

          (2)已知等差數(shù)列中,已知,則=________________.

          (3)若函數(shù),則__________

          (4)曲線與直線軸圍成的圖形的面積為__________

          【答案】

          【解析】

          (1)求函數(shù)導(dǎo)數(shù),再將x=0代入得切線斜率,進而由直線垂直可得斜率之積為-1,從而得解;

          (2),代入條件即可得解;

          (3)求函數(shù)導(dǎo)數(shù),代入x=1即可得解;

          (4)曲線與直線的交點為(1,2),由定積分的幾何意義,計算即可得解.

          (1)解:∵,

          ∴曲線在點(0,0)處的切線方程是y=x,

          ∵直線y=x與直線垂直垂直∴,即

          故答案為1.

          (2)等差數(shù)列中,已知,

          故答案為54.

          (3)因為于是一個常數(shù)

          所以,代入得,

          所以

          故答案為-2e.

          (4) 曲線與直線的交點為(1,2),

          由曲線直線y=-x+3x軸所圍成的圖形的面積是

          故答案為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點為,點上異于頂點的任意一點,過的直線于另一點,交軸正半軸于點,且有,當(dāng)點的橫坐標(biāo)為3時,為正三角形.

          1)求的方程;

          2)若直線,且相切于點,試問直線是否過定點,若過定點,求出定點坐標(biāo);若不過定點,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以下四個命題:

          ,則的逆否命題為真命題

          函數(shù)在區(qū)間上為增函數(shù)的充分不必要條件

          ③若為假命題,則,均為假命題

          ④對于命題,,則為:

          其中真命題的個數(shù)是(

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù) f(x)的最小值為0.

          (1)a的值;

          (2)若數(shù)列滿足a1=1,an+l=f(an)+2(nZ+),Sn=[a1]+[a2]+…+[an],[m]表示不超過實數(shù)m的最大整數(shù),求Sn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】拋物線的焦點是.問:是否存在內(nèi)接等腰直角三角形,該三角形的一條直角邊過點?如果存在,存在幾個?如果不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,過點的直線與圓相交于兩點,過點且與垂直的直線與圓的另一交點為

          (1)當(dāng)點坐標(biāo)為時,求直線的方程;

          (2)求四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的左、右頂點分別為A,B,離心率為,點P1,)為橢圓上一點.

          1)求橢圓C的標(biāo)準(zhǔn)方程;

          2)如圖,過點C01)且斜率大于1的直線l與橢圓交于M,N兩點,記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

          (1)求圓C的方程;

          (2)過點M(10)的直線與圓C交于A,B兩點(Ax軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,,,,△是等邊三角形,分別為的中點.

          (Ⅰ)求證:平面;

          (Ⅱ)若二面角的大小為,求直線與平面所成角的正切值.

          查看答案和解析>>

          同步練習(xí)冊答案