日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知F是橢圓D:的右焦點,過點E(2,0)且斜率為正數(shù)的直線l與D交于A、B兩點,C是點A關于x軸的對稱點.
          (Ⅰ)證明:點F在直線BC上;
          (Ⅱ)若,求△ABC外接圓的方程.
          【答案】分析:(Ⅰ)設出直線l的方程,代入橢圓方程,利用向量共線,證明B、F、C三點共線,即點F在直線BC上;
          (Ⅱ)利用,確定直線的斜率,從而可求A,B,C的坐標,即可求△ABC外接圓的方程.
          解答:(Ⅰ)證明:設直線l:y=k(x-2),A(x1,y1),B(x2,y2),C(x1,-y1),F(xiàn)(1,0),
          得(2k2+1)x2-8k2x+8k2-2=0.
          所以,
          又△=64k4-8(2k2+1)(4k2-1)>0,則.…(3分)
          ,
          所以(x1-1)(kx2-2k)-(x2-1)(-kx1+2k)=k[2x1x2-3(x1+x2)+4==0.…(5分)
          ∴B、F、C三點共線,即點F在直線BC上.…(6分)
          (Ⅱ)解:因為,,
          所以=(1-k2)[x1x2-2(x1+x2)+4]===1,
          又k>0,解得,滿足.…(9分)
          代入(2k2+1)x2-8k2x+8k2-2=0,知 x1,x2是方程3x2-4x=0的兩根,
          根據(jù)對稱性不妨設x1=0,,即A(0,-1),C(0,1),.…(10分)
          設△ABC外接圓的方程為(x-a)2+y2=a2+1,把代入方程得
          即△ABC外接圓的方程為.…(12分)
          點評:本題考查直線與橢圓的位置關系,考查向量知識的運用,考查圓的方程,考查學生的計算能力,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知F是橢圓D:數(shù)學公式的右焦點,過點E(2,0)且斜率為正數(shù)的直線l與D交于A、B兩點,C是點A關于x軸的對稱點.
          (Ⅰ)證明:點F在直線BC上;
          (Ⅱ)若數(shù)學公式,求△ABC外接圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:云南省模擬題 題型:解答題

          已知F是橢圓D:的右焦點,過點E(2,0)且斜率為k的直線l與D交于A、B兩點,C是點A關于x軸的對稱點。
          (1)證明:點F在直線BC上;
          (2)設,求△ABC外接圓的方程。

          查看答案和解析>>

          科目:高中數(shù)學 來源:云南省模擬題 題型:解答題

          已知F是橢圓D:的右焦點,過點E(2,0)且斜率為正數(shù)的直線l與D交于A、B兩點,C是點A關于x軸的對稱點。
          (1)證明:點F在直線BC上;
          (2)若,求△ABC外接圓的方程。

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年云南省昆明市高三復習5月適應性檢測數(shù)學試卷(文科)(解析版) 題型:解答題

          已知F是橢圓D:的右焦點,過點E(2,0)且斜率為正數(shù)的直線l與D交于A、B兩點,C是點A關于x軸的對稱點.
          (Ⅰ)證明:點F在直線BC上;
          (Ⅱ)若,求△ABC外接圓的方程.

          查看答案和解析>>

          同步練習冊答案