【題目】已知點(diǎn)是拋物線
:
上的一點(diǎn),其焦點(diǎn)為點(diǎn)
,且拋物線
在點(diǎn)
處的切線
交圓
:
于不同的兩點(diǎn)
,
.
(1)若點(diǎn),求
的值;
(2)設(shè)點(diǎn)為弦
的中點(diǎn),焦點(diǎn)
關(guān)于圓心
的對稱點(diǎn)為
,求
的取值范圍.
【答案】(1)(2)
【解析】
(1)利用導(dǎo)數(shù)求出過點(diǎn)的拋物線的切線,切線與圓相交,根據(jù)弦心距、半徑、弦長的關(guān)系求解即可;
(2)設(shè)點(diǎn),聯(lián)立切線與圓的方程消元可得一元二次方程,由韋達(dá)定理求出中點(diǎn)
的坐標(biāo),由兩點(diǎn)間距離公式表示出
,令
換元,利用函數(shù)的單調(diào)性即可求出取值范圍.
設(shè)點(diǎn),其中
.
因?yàn)?/span>,所以切線
的斜率為
,于是切線
:
.
(1)因?yàn)?/span>,于是切線
:
.
故圓心到切線
的距離為
.
于是.
(2)聯(lián)立得
.
設(shè),
,
.則
,
.
解得
又,于是
.
于是,
.
又的焦點(diǎn)
,于是
.
故.
令,則
.于是
.
因?yàn)?/span>在
單調(diào)遞減,在
單調(diào)遞增.
又當(dāng)時,
;當(dāng)
時,
;
當(dāng)時,
.
所以的取值范圍為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,過l上一點(diǎn)P作拋物線C的兩條切線,切點(diǎn)為A,B.
(1)求證:直線AB過焦點(diǎn)F;
(2)若|PA|=8,|PB|=6,求|PF|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為
,
(1)求證:數(shù)列是等比數(shù)列;
(2)若,是否存在q的某些取值,使數(shù)列
中某一項(xiàng)能表示為另外三項(xiàng)之和?若能求出q的全部取值集合,若不能說明理由.
(3)若,是否存在
,使數(shù)列
中,某一項(xiàng)可以表示為另外三項(xiàng)之和?若存在指出q的一個取值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】成都七中為了解班級衛(wèi)生教育系列活動的成效,對全校40個班級進(jìn)行了一次突擊班級衛(wèi)生量化打分檢查(滿分100分,最低分20分).根據(jù)檢查結(jié)果:得分在評定為“優(yōu)”,獎勵3面小紅旗;得分在
評定為“良”,獎勵2面小紅旗;得分在
評定為“中”,獎勵1面小紅旗;得分在
評定為“差”,不獎勵小紅旗.已知統(tǒng)計(jì)結(jié)果的部分頻率分布直方圖如下圖:
(1)依據(jù)統(tǒng)計(jì)結(jié)果的部分頻率分布直方圖,求班級衛(wèi)生量化打分檢查得分的中位數(shù);
(2)學(xué)校用分層抽樣的方法,從評定等級為“優(yōu)”、“良”、“中”、“差”的班級中抽取10個班級,再從這10個班級中隨機(jī)抽取2個班級進(jìn)行抽樣復(fù)核,記抽樣復(fù)核的2個班級獲得的獎勵小紅旗面數(shù)和為,求
的分布列與數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線的極坐標(biāo)方程和曲線
的參數(shù)方程;
(2)若,直線
與曲線
交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (
),將
的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
倍(縱坐標(biāo)不變),再將得到的圖象上所有點(diǎn)向右平行移動
個單位長度,得到
的圖象,則以下關(guān)于函數(shù)
的結(jié)論正確的是( )
A.若,
是
的零點(diǎn),則
是
的整數(shù)倍
B.函數(shù)在區(qū)間
上單調(diào)遞增
C.點(diǎn)是函數(shù)
圖象的對稱中心
D.是函數(shù)
圖象的對稱軸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】CPI是居民消費(fèi)價格指數(shù)(comsummer priceindex)的簡稱.居民消費(fèi)價格指數(shù)是一個反映居民家庭一般所購買的消費(fèi)品價格水平變動情況的宏觀經(jīng)濟(jì)指標(biāo).如圖是根據(jù)國家統(tǒng)計(jì)局發(fā)布的2019年4月——2020年4月我國CPI漲跌幅數(shù)據(jù)繪制的折線圖(注:2019年6月與2018年6月相比較,叫同比;2019年6月與2019年5月相比較,叫環(huán)比),根據(jù)該折線圖,則下列結(jié)論正確的是( )
A.2019年4月至2020年4月各月與去年同期比較,CPI有漲有跌
B.2019年4月居民消費(fèi)價格同比漲幅最小,2020年1月同比漲幅最大
C.2020年1月至2020年4月CPI只跌不漲
D.2019年4月至2019年6月CPI漲跌波動不大,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面
為直角梯形,
,
,
,
為線段
的中點(diǎn),
底面
,點(diǎn)
是棱
的中點(diǎn),平面
與棱
相交于點(diǎn)
.
(1)求證:;
(2)若與
所成的角為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com