【題目】在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中點.
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長;若不存在,請說明理由.
【答案】
(1)證明:∵ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ABD為等邊三角形,
E為AB中點,∴DE⊥AB,∴DE⊥CD,
∵ADMN是矩形,∴ND⊥AD,
又平面ADMN⊥平面ABCD,平面ADMN∩平面ABCD=AD,
∴ND⊥平面ABCD,∴ND⊥DE,
∵CD∩ND=D,∴DE⊥平面NDC,
∵DE平面MDE,∴平面MDE⊥平面NDC.
因為面ABM∥面NDC,∴平面DEM⊥平面ABM
(2)解:設存在P符合題意.
由(Ⅰ)知,DE、DC、DN兩兩垂直,以D為原點,建立空間直角坐標系D﹣xyz(如圖),
則D(0,0,0),A( ,﹣1,0),E(
,0,0),C(0,2,0),P(
,﹣1,h)(0≤h≤1).
∴ =(0,﹣1,h),
=(﹣
,2,0),設平面PEC的法向量為
=(x,y,z),
則 令x=2h,則平面PEC的一個法向量為
=(2h,
h,
)
取平面ECD的法向量 =(0,0,1),
cos45°= ,解得h=
∈[0,1],
即存在點P,使二面角P﹣EC﹣D的大小為 ,此時AP=
.
【解析】(1)推導出DE⊥CD,ND⊥AD,從而ND⊥DE,進而DE⊥平面NDC,由此能證明平面MAE⊥平面NDC.(2)以D為原點,建立空間直角坐標系D﹣xyz,求出平面PEC的一個法向量、平面ECD的法向量.利用向量的夾角公式,建立方程,即可得出結論.
【考點精析】解答此題的關鍵在于理解平面與平面垂直的判定的相關知識,掌握一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數學 來源: 題型:
【題目】已知焦距為2的橢圓W: =1(a>b>0)的左、右焦點分別為A1 , A2 , 上、下頂點分別為B1 , B2 , 點M(x0 , y0)為橢圓W上不在坐標軸上的任意一點,且四條直線MA1 , MA2 , MB1 , MB2的斜率之積為
.
(1)求橢圓W的標準方程;
(2)如圖所示,點A,D是橢圓W上兩點,點A與點B關于原點對稱,AD⊥AB,點C在x軸上,且AC與x軸垂直,求證:B,C,D三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個花壇中,余下的2種花種在另一個花壇中,則紅色和紫色的花不在同一花壇的概率是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關系,現在從月份的
天中隨機挑選了
天進行研究,且分別記錄了每天晝夜溫差與每天
顆種子浸泡后的發(fā)芽數,得到如下表格:
日期 |
|
|
|
|
|
溫差 | |||||
發(fā)芽數 |
()從這
天中任選
天,記發(fā)芽的種子數分別為
,
,求事件“
,
均不小于
”的概率.
()從這
天中任選
天,若選取的是
月
日與
月
日的兩組數據,請根據這
天中的另
天的數據,求出
關于
的線性回歸方程
.
()若由線性回歸方程得到的估計數據與所選出的兩組檢驗數據的誤差均不超過
顆,則認為得到的線性回歸方程是可靠的,試問(
)中所得的線性回歸方程是否可靠?
(參考公式: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有2個紅球A1 ,A2和1個白球B的甲箱與裝有2個紅球a1 ,a2和2個白球b1,b2的乙箱中,各隨機摸出1個球.若摸出的2個球都是紅球則中獎,否則不中獎.
(1)用球的標號列出所有可能的摸出結果;
(2)有人認為:兩個箱子中的紅球比白球多,所以中獎的概率大于不中獎的概率.你認為正確嗎?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣a|+|2x﹣1|(a∈R).
(1)當a=﹣1時,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合 ,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ex﹣ax,a是常數.
(Ⅰ)若a=1,且曲線y=f(x)的切線l經過坐標原點(0,0),求該切線的方程;
(Ⅱ)討論f(x)的零點的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知半徑為1的動圓與定圓(x-5)2+(y+7)2=16相切,則動圓圓心的軌跡方程是( )
A. (x-5)2+(y+7)2=25
B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C. (x-5)2+(y+7)2=9
D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com