求以橢圓的焦點為焦點,且過
點的雙曲線的標(biāo)準(zhǔn)方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的離心率為
,左、右焦點分別為
,點G在橢圓C上,且
,
的面積為3.
(1)求橢圓C的方程:
(2)設(shè)橢圓的左、右頂點為A,B,過的直線
與橢圓交于不同的兩點M,N(不同于點A,B),探索直線AM,BN的交點能否在一條垂直于
軸的定直線上,若能,求出這條定直線的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標(biāo)系,已知
=λ
,
=λ
,其中0<λ<1.
(1)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(2)若點N是直線l:y=x+2上且不在坐標(biāo)軸上的任意一點,F(xiàn)1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標(biāo)原點
,對稱軸為
軸,焦點為
,拋物線上一點
的橫坐標(biāo)為2,且
.
(1)求拋物線的方程;
(2)過點作直線
交拋物線于
,
兩點,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動直線與橢圓
交于
、
兩不同點,且△
的面積
=
,其中
為坐標(biāo)原點.
(1)證明和
均為定值;
(2)設(shè)線段的中點為
,求
的最大值;
(3)橢圓上是否存在點
,使得
?若存在,判斷△
的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓:
的離心率為
,點
為其下焦點,點
為坐標(biāo)原點,過
的直線
:
(其中
)與橢圓
相交于
兩點,且滿足:
.
(1)試用 表示
;
(2)求 的最大值;
(3)若 ,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點是坐標(biāo)原點,對稱軸是軸的拋物線經(jīng)過點
.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)直線過定點
,斜率為
,當(dāng)
為何值時,直線與拋物線有公共點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
經(jīng)過如下五個點中的三個點:
,
,
,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點為橢圓
的左頂點,
為橢圓
上不同于點
的兩點,若原點在
的外部,且
為直角三角形,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓,稱圓心在坐標(biāo)原點O,半徑為
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是
.
(1)若橢圓C上一動點滿足
,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為
,求P點的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點
的直線的最短距離
.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com