日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓T的中心為坐標(biāo)原點O,右焦點為F(2,0),且橢圓T過點E(2,).△ABC的三個頂點都在橢圓T上,設(shè)三條邊的中點分別為M,N,P.
          (1)求橢圓T的方程;
          (2)設(shè)△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:為定值.
          【答案】分析:(1)設(shè)出橢圓的標(biāo)準(zhǔn)方程,利用橢圓的定義,即可確定橢圓的標(biāo)準(zhǔn)方程;
          (2)利用點差法,確定三條邊所在直線的斜率,結(jié)合直線OM,ON,OP的斜率之和為0,即可得到結(jié)論.
          解答:解:(1)設(shè)橢圓T的方程為(a>b>0),
          由題意知:左焦點為F′(-2,0),所以2a=|EF|+|EF′|=+3,
          解得a=2
          ∵c=2,∴=2.
          故橢圓T的方程為…(4分)
          (2)設(shè)A(x1,y1),B(x2,y2),C(x3,y3),M(s1,t1),N(s2,t2),P(s3,t3),
          由:,兩式相減,得到
          (x1-x2)(x1+x2)+2(y1-y2)(y1+y2)=0
          所以=,即,…(9分)
          同理,
          所以,
          又因為直線OM,ON,OP的斜率之和為0,
          所以=0 …(13分)
          點評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查點差法的運用,考查學(xué)生的計算能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•楊浦區(qū)一模)橢圓T的中心為坐標(biāo)原點O,右焦點為F(2,0),且橢圓T過點E(2,
          2
          ).△ABC的三個頂點都在橢圓T上,設(shè)三條邊的中點分別為M,N,P.
          (1)求橢圓T的方程;
          (2)設(shè)△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:
          1
          k1
          +
          1
          k2
          +
          1
          k3
          為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          橢圓T的中心為坐標(biāo)原點O,右焦點為F(2,0),且橢圓T過點E(2,數(shù)學(xué)公式).△ABC的三個頂點都在橢圓T上,設(shè)三條邊的中點分別為M,N,P.
          (1)求橢圓T的方程;
          (2)設(shè)△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:數(shù)學(xué)公式為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:楊浦區(qū)一模 題型:解答題

          橢圓T的中心為坐標(biāo)原點O,右焦點為F(2,0),且橢圓T過點E(2,
          2
          ).△ABC的三個頂點都在橢圓T上,設(shè)三條邊的中點分別為M,N,P.
          (1)求橢圓T的方程;
          (2)設(shè)△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:
          1
          k1
          +
          1
          k2
          +
          1
          k3
          為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市東城區(qū)示范校高三(上)12月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          橢圓T的中心為坐標(biāo)原點O,右焦點為F(2,0),且橢圓T過點E(2,).△ABC的三個頂點都在橢圓T上,設(shè)三條邊的中點分別為M,N,P.
          (1)求橢圓T的方程;
          (2)設(shè)△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟寧市汶上一中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          橢圓T的中心為坐標(biāo)原點O,右焦點為F(2,0),且橢圓T過點E(2,).△ABC的三個頂點都在橢圓T上,設(shè)三條邊的中點分別為M,N,P.
          (1)求橢圓T的方程;
          (2)設(shè)△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:為定值.

          查看答案和解析>>

          同步練習(xí)冊答案