【題目】如圖,橢圓(
)的離心率是
,過點(diǎn)
(
,
)的動(dòng)直線
與橢圓相交于
,
兩點(diǎn),當(dāng)直線
平行于
軸時(shí),直線
被橢圓
截得的線段長(zhǎng)為
.
⑴求橢圓的方程:
⑵已知為橢圓的左端點(diǎn),問: 是否存在直線
使得
的面積為
?若不存在,說明理由,若存在,求出直線
的方程.
【答案】(1);(2)存在直線
方程
使得
.
【解析】試題分析:(1)借助題設(shè)條件建立方程組求解;(2)依據(jù)題設(shè)運(yùn)用直線與橢圓的位置關(guān)系進(jìn)行探求.
試題解析:
(1)橢圓
:
的離心率是
,過點(diǎn)
的動(dòng)直線
與橢圓相交于
兩點(diǎn),
當(dāng)直線平行于
軸時(shí),直線
被橢圓
截得的線段長(zhǎng)為
,
點(diǎn)
在橢圓
上,
,解得:
,………………4分
橢圓的方程為
………………………5分,
(2)當(dāng)直線與
軸平行時(shí),
不存在,…………………6分,
設(shè)直線
的方程為
,并設(shè)兩點(diǎn)
,
,
聯(lián)立,得
,
其判別式,…………8分,
,
,
,…………10分
假設(shè)存在直線,則有
,
解得,負(fù)解刪除,
,……………………12分
故存在直線方程
使得
…………13分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)①f(x)=4x+-5,②f(x)=|log2 x|-(
)x,③f(x)=cos(x+2)-cosx,判斷如下兩個(gè)命題的真假:
命題甲:f(x)在區(qū)間(1,2)上是增函數(shù);
命題乙:f(x)在區(qū)間(0,+∞)上恰有兩個(gè)零點(diǎn)x1,x2,且x1x2<1.
能使命題甲、乙均為真的函數(shù)的序號(hào)是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+
x2+
x(0<a<1,x∈R).若對(duì)于任意的三個(gè)實(shí)數(shù)x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在直角梯形中,
,
,
,
,
是
的中點(diǎn),
是
與
的交點(diǎn),將
沿
折起到
的位置,如圖乙.
(Ⅰ)證明:平面
;
(Ⅱ)若平面平面
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,
,
與
相交于點(diǎn)
,
平面
,
.
(1)求證:平面
;
(2)當(dāng)直線與平面
所成角的大小為
時(shí),求
的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
)在
上的最小值為
,當(dāng)把
的圖象上所有的點(diǎn)向右平移
個(gè)單位后,得到函數(shù)
的圖象.
(1)求函數(shù)的解析式;
(2)在△中,角
,
,
對(duì)應(yīng)的邊分別是
,
,
,若函數(shù)
在
軸右側(cè)的第一個(gè)零點(diǎn)恰為
,
,求△
的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).若
的一個(gè)零點(diǎn)附近的函數(shù)值如下所示,請(qǐng)用二分法求出方程
的一個(gè)正實(shí)數(shù)解的近似值(精確度0.1).
,
,
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過定點(diǎn)P(-2,1)作直線l分別與x、y軸交于A、B兩點(diǎn),
(1)求經(jīng)過點(diǎn)P且在兩坐標(biāo)軸上的截距相等的直線l方程.
(2)求使面積為4時(shí)的直線l方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com