日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐P﹣ABCD的底面ABCD為直角梯形,AD//BC,且,BCDC,BAD=60°,平面PAD底面ABCD,E為AD的中點(diǎn),PAD為等邊三角形,M是棱PC上的一點(diǎn),設(shè)(M與C不重合).

          1)求證:CDDP;

          (2)若PA平面BME,求k的值;

          3)若二面角M﹣BE﹣A的平面角為150°,求k的值.

          【答案】(1)證明見解析;(2);(3).

          【解析】

          試題分析:(1)先證從而平面,進(jìn)而再由得到,可證;(2)連接,連接可得,從而,進(jìn)而求出的值;(3)連接,做,做,連,則為二面角的平面角,進(jìn)而可求出的值.

          試題解析:證明:(1)因?yàn)?/span>PAD為等邊三角形,E為AD的中點(diǎn),所以PEAD.

          因?yàn)槠矫鍼AD平面ABCD,且平面PAD∩平面ABCD=AD,PE平面PAD,

          所以PE平面ABCD.

          又CD平面ABCD,所以PECD.

          由已知得CDDA,PE∩AD=E,所以CD平面PAD.

          雙DP平面PAD,所以CDDP.

          解:2)連接AC交BE于N,連接MN.

          因?yàn)镻A平面BME,PA平面PAC,

          平面PAC∩平面BME=MN,所以PAMN.

          因?yàn)锳DBC,BCDC,所以CBN=AEN=90°.

          又CB=AE,CNB=ANE,所以CNB≌△ANE.

          所以CN=NA,則M為PC的中點(diǎn),k=1.

          3)依題意,若二面角M﹣BE﹣A的大小為150°,則二面角M﹣BE﹣C的大小為30°.

          連接CE,過點(diǎn)M作MFPE交CE于F,過A(0,1,0)作FGBE于G,連接MG.

          因?yàn)镻E平面ABCD,所以MF平面ABCD.

          又BE平面ABCD,所以MFBE.

          又MF∩FG=F,MF平面MFG,F(xiàn)G平面MFG,

          所以BE平面MFG,從而BEMG.

          MGF為二面角M﹣BE﹣C的平面角,即MGF=30°.

          在等邊PAD中,.由于,所以

          ,所以

          MFG中,

          解得k=3.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正三棱柱各條棱的長度均相等,的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是

          A. 內(nèi)總存在與平面平行的線段

          B. 平面平面

          C. 三棱錐的體積為定值

          D. 可能為直角三角形

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)求證:直線是曲線的切線;

          (Ⅲ)寫出的一個(gè)值,使得函數(shù)有三個(gè)不同零點(diǎn)(只需直接寫出數(shù)值)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了選拔參加自行車比賽的選手,對(duì)自行車運(yùn)動(dòng)員甲、乙兩人在相同條件下進(jìn)行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:

          27

          38

          30

          37

          35

          31

          33

          29

          38

          34

          28

          36

          (1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;

          (2)估計(jì)甲、乙兩運(yùn)動(dòng)員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】行了一次水平測試。用系統(tǒng)抽樣的方法抽取了50名學(xué)生的數(shù)學(xué)成績,準(zhǔn)備進(jìn)行分析和研究。經(jīng)統(tǒng)計(jì)成績的分組及各組的頻數(shù)如下:,2;3;,10;,15,12;8.

          )頻率分布表

          分組

          頻數(shù)

          頻率

          2

          3

          10

          15

          12

          8

          合計(jì)

          50

          頻率分布直方圖為

          )完成樣本的頻率分布表;畫出頻率分直方圖;

          )估計(jì)成績?cè)?/span>85分以下的學(xué)生比例;

          )請(qǐng)你根據(jù)以上信息去估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù).(精確到0.01

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a是實(shí)常數(shù),函數(shù)

          1)若曲線處的切線過點(diǎn)A0,﹣2),求實(shí)數(shù)a的值;

          2)若有兩個(gè)極值點(diǎn)),

          求證:;

          求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】偶函數(shù)fx)(x∈R)滿足:f﹣4=f1=0,且在區(qū)間[03][3,+∞)上分別遞減和遞增,則不等式x3fx)<0的解集為( )

          A.﹣∞,﹣44,+∞

          B.﹣4,﹣114

          C.﹣∞,﹣4﹣1,0

          D.﹣∞,﹣4﹣1,014

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ1,曲線C的極坐標(biāo)方程為ρsin2θ8cosθ

          1)求直線l與曲線C的直角坐標(biāo)方程;

          2)設(shè)點(diǎn)M0,1),直線l與曲線C交于不同的兩點(diǎn)P,Q,求|MP|+|MQ|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年世界海洋日暨全國海洋宣傳日主場活動(dòng)在海南三亞舉行,此次活動(dòng)主題為“珍惜海洋資源保護(hù)海洋生物多樣性”,旨在進(jìn)一步提高公眾對(duì)節(jié)約利用海洋資源.保護(hù)海洋生物多樣性的認(rèn)識(shí),為保護(hù)藍(lán)色家園做出貢獻(xiàn).聯(lián)合國于第63屆聯(lián)合國大會(huì)上將每年的68日確定為“世界海洋日”,為了響應(yīng)世界海洋日的活動(dòng),201912月北京某高校行政主管部門從該大學(xué)隨機(jī)抽取部分大學(xué)生進(jìn)行一次海洋知識(shí)測試,并根據(jù)被測驗(yàn)學(xué)生的成績(得分都在區(qū)間內(nèi))繪制成如圖所示的頻率分布直方圖.

          若學(xué)生的得分成績不低于80分的認(rèn)為是“成績優(yōu)秀”現(xiàn)在從認(rèn)為“成績優(yōu)秀”的學(xué)生中根據(jù)原有分組按照分層抽樣的方法抽取10人進(jìn)行獎(jiǎng)勵(lì),最后再從這10人中隨機(jī)選取3人作為優(yōu)秀代表發(fā)言.

          1)求所抽取的3人不屬于同一組的概率;

          2)記這3人中,為測試成績?cè)?/span>內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案