日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•朝陽(yáng)區(qū)二模)右邊程序框圖的程序執(zhí)行后輸出的結(jié)果是
          35
          35
          分析:解答算法框圖的問題,要依次執(zhí)行各個(gè)步驟,特別注意循環(huán)結(jié)構(gòu)的終止條件,本題中是n>10就終止循環(huán),因此累加變量累加到值11.于是計(jì)算得到結(jié)果.
          解答:解:由已知變量初始值為:n=1,累加變量S=0;
          每次變量n遞增2,而n≤10時(shí)執(zhí)行程序,n>10就終止循環(huán),輸出S,
          因此有S=0+3+5+7+9+11=35.
          故答案為:35.
          點(diǎn)評(píng):本題考查了算法框圖,流程圖的識(shí)別,條件框,循環(huán)結(jié)構(gòu)等算法框圖的應(yīng)用,對(duì)多個(gè)變量計(jì)數(shù)變量,累加變量的理解與應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽(yáng)區(qū)二模)已知全集U=R,集合A={x|2x>1},B={ x|
          1
          x-1
          >0 }
          ,則A∩(CUB)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽(yáng)區(qū)二模)設(shè)函數(shù)f(x)=lnx+(x-a)2,a∈R.
          (Ⅰ)若a=0,求函數(shù)f(x)在[1,e]上的最小值;
          (Ⅱ)若函數(shù)f(x)在[
          12
          ,2]
          上存在單調(diào)遞增區(qū)間,試求實(shí)數(shù)a的取值范圍;
          (Ⅲ)求函數(shù)f(x)的極值點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽(yáng)區(qū)二模)在長(zhǎng)方形AA1B1B中,AB=2A1=4,C,C1分別是AB,A1B1的中點(diǎn)(如圖).將此長(zhǎng)方形沿CC1對(duì)折,使平面AA1C1C⊥平面CC1B1B(如圖),已知D,E分別是A1B1,CC1的中點(diǎn).
          (Ⅰ)求證:C1D∥平面A1BE;
          (Ⅱ)求證:平面A1BE⊥平面AA1B1B;
          (Ⅲ)求三棱錐C1-A1BE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽(yáng)區(qū)二模)已知cosα=
          3
          5
          ,0<α<π,則tan(α+
          π
          4
          )
          =( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽(yáng)區(qū)二模)已知函數(shù)f(x)=2sinx•sin(
          π
          2
          +x)-2sin2x+1
          (x∈R).
          (Ⅰ)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (Ⅱ)若f(
          x0
          2
          )=
          2
          3
          x0∈(-
          π
          4
          ,
          π
          4
          )
          ,求cos2x0的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案