日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 理科已知函數(shù),當時,函數(shù)取得極大值.
          (Ⅰ)求實數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導數(shù)都存在,且,則存在,使得.試用這個結(jié)論證明:若,函數(shù),則對任意,都有;(Ⅲ)已知正數(shù)滿足求證:當,時,對任意大于,且互不相等的實數(shù),都有

          (Ⅰ)m=-1;(Ⅱ)利用導數(shù)判斷函數(shù)的單調(diào)性,從而證明不等式;(Ⅲ)利用數(shù)學歸納法證明

          解析試題分析:(Ⅰ). 由,得,此時.
          時,,函數(shù)在區(qū)間上單調(diào)遞增;
          時,,函數(shù)在區(qū)間上單調(diào)遞減.
          函數(shù)處取得極大值,故.  3分
          (Ⅱ)令,  4分
          .函數(shù)上可導,存在,使得.又
          時,,單調(diào)遞增,;
          時,,單調(diào)遞減,;
          故對任意,都有.  8分
          (Ⅲ)用數(shù)學歸納法證明.
          ①當時,,且,,
          ,由(Ⅱ)得,即

          時,結(jié)論成立.  9分
          ②假設(shè)當時結(jié)論成立,即當時,
          . 當時,設(shè)正數(shù)滿足
           
          ,且.

             13分
          時,結(jié)論也成立.
          綜上由①②,對任意,結(jié)論恒成立.  14分
          考點:本題考查了導數(shù)的運用
          點評:近幾年新課標高考對于函數(shù)與導數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點考查函數(shù)單調(diào)性、導數(shù)運算、不等式方程的求解等基本知識,注重數(shù)學思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、數(shù)學歸納法)的運用.把數(shù)學運算的“力量”與數(shù)學思維的“技巧”完美結(jié)合.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)求它的定義域,值域;(2)判定它的奇偶性和周期性;(3)判定它的單調(diào)區(qū)間及每一區(qū)間上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設(shè)函數(shù)
          (1)當時,求的值域
          (2)解關(guān)于的不等式:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P點處的切線斜率為2.
          (1)求a,b的值;
          (2)證明:f(x)≤2x-2.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)若函數(shù)有最 大值,求實數(shù)的值
          (2)解不等式

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)若處取得極值,求的值;
          (2)求的單調(diào)區(qū)間;
          (3)若,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)若函數(shù)無零點,求實數(shù)的取值范圍;
          (Ⅱ)若函數(shù)有且僅有一個零點,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù).
          (1)若,函數(shù)是R上的奇函數(shù),當,(i)求實數(shù)
          的值;(ii)當時,求的解析式;
          (2)若方程的兩根中,一根屬于區(qū)間,另一根屬于區(qū)間,求實數(shù)的取 值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),函數(shù)
          ①當時,求函數(shù)的表達式;
          ②若,函數(shù)上的最小值是2 ,求的值;
          ③在②的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.

          查看答案和解析>>

          同步練習冊答案