日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若橢圓的離心率等于,拋物線的焦點在橢圓的頂點上.

          1)求拋物線的方程;

          2)若過的直線與拋物線交于兩點,又過作拋物線的切線、,當(dāng)時,求直線的方程.

          【答案】1;(2.

          【解析】

          1)由橢圓的離心率的公式和橢圓中的關(guān)系,可以求出的值,最后可以求出拋物線的方程;

          2)設(shè)出直線的方程,設(shè)出兩點坐標(biāo),把拋物線方程變成函數(shù)解析式形式,對函數(shù)進(jìn)行求導(dǎo),求出過、的拋物線的切線、的斜率,將直線的方程與拋物線方程聯(lián)立,消,得到一個關(guān)于的一元二次方程,利用根與系數(shù)關(guān)系,結(jié)合兩直線垂直它們的斜率的關(guān)系進(jìn)行求解即可.

          1)已知橢圓的長半軸長為,半焦距,

          由離心率,

          橢圓的上頂點為,即拋物線的焦點為,,

          因此,拋物線的方程為;

          2)由題知直線的斜率存在且不為零,

          則可設(shè)直線的方程為,,

          拋物線的函數(shù)解析式為,求導(dǎo)得,切線、的斜率分別為,

          當(dāng)時,,即,

          ,得

          ,解得.

          ,得.

          因此,直線的方程為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列四個命題:

          中,成立的充要條件;

          ②當(dāng)時,有

          ③已知 是等差數(shù)列的前n項和,若,則;

          ④若函數(shù)上的奇函數(shù),則函數(shù)的圖象一定關(guān)于點成中心對稱.其中所有正確命題的序號為___________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),

          (1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

          (2)已知,,若對任意都成立,求的最大值;

          (3)設(shè),若存在,使得成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解學(xué)生的身體狀況,某校隨機(jī)抽取了一批學(xué)生測量體重.經(jīng)統(tǒng)計,這批學(xué)生的體重數(shù)據(jù)(單位:千克)全部介于4570之間.將數(shù)據(jù)分成以下5組:第1,第2,第3,第4,第5,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第3,45組中隨機(jī)抽取6名學(xué)生,則第34,5組抽取的學(xué)生人數(shù)依次為(

          A.4,56B.3,2,1C.2,4,5D.21,3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,貴陽一中“保護(hù)飲用水源地”課題研究小組的同學(xué)們對紅楓湖、百花湖、阿哈水庫、花溪水庫、北郊水庫5處水源地進(jìn)行了樣本采集并送環(huán)保部門進(jìn)行水質(zhì)檢測.已知5處水源地中有1處被某污染物污染,需要通過檢測水源樣本來確定被污染的水源地現(xiàn)有三個檢測方案:

          方案甲:對5個樣本逐個檢測,直到能確定被污染的水源地為止.

          方案乙:先任取1個樣本進(jìn)行檢測,若檢測到污染物,則檢測結(jié)束;若未檢測到污染物,則在剩余4個樣本中任取2個,并將這2個樣本取部分混合在一起檢測,若檢測到污染物,則再在這2個樣本中任取一個檢測,否則在剩余2個未檢測樣本中任取一個檢測.

          方案丙:先任取2個樣本,并將這2個樣本取部分混合在一起檢測,若檢測到污染物,則再在這2個樣本中任取一個檢測;若未檢測到污染物,則對剩余3個未檢測樣本進(jìn)行逐個檢測,直到能確定被污染的水源地為止.假設(shè)隨機(jī)變量分別表示用方案甲、方案乙、方案丙進(jìn)行檢測所需的檢測次數(shù).

          1)求能取到的最大值和其對應(yīng)的概率;

          2)求的期望假設(shè)每次檢測的費用都相同,請從經(jīng)濟(jì)角度說明方案乙和方案丙哪一個更適合?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐P-ABCD中,PA平面ABCD,菱形ABCD的邊長為2,且,點E、F分別是PA,CD的中點,

          1)求證:EF平面PBC

          2)若PC與平面ABCD所成角的大小為,求C到平面PBD的距離

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

          月份

          1

          2

          3

          4

          5

          違章駕駛員人數(shù)

          120

          105

          100

          90

          85

          (1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

          (2)預(yù)測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

          (3)交警從這5個月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

          不禮讓斑馬線

          禮讓斑馬線

          合計

          駕齡不超過1年

          22

          8

          30

          駕齡1年以上

          8

          12

          20

          合計

          30

          20

          50

          能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

          參考公式及數(shù)據(jù):,.

          0.150

          0.100

          0.050

          0.025

          0.010

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (其中n=a+b+c+d)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某游戲棋盤上標(biāo)有第站,棋子開始位于第站,選手拋擲均勻骰子進(jìn)行游戲,若擲出骰子向上的點數(shù)不大于,棋子向前跳出一站;否則,棋子向前跳出兩站,直到跳到第站或第站時,游戲結(jié)束.設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.

          1)當(dāng)游戲開始時,若拋擲均勻骰子次后,求棋子所走站數(shù)之和的分布列與數(shù)學(xué)期望;

          2)證明:;

          3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請分析這個游戲是否公平.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)的定義域為,若存在一次函數(shù),使得對于任意的,都有恒成立,則稱函數(shù)上的弱漸進(jìn)函數(shù).下列結(jié)論正確的是______.(寫出所有正確命題的序號)

          上的弱漸進(jìn)函數(shù);

          上的弱漸進(jìn)函數(shù);

          上的弱漸進(jìn)函數(shù);

          上的弱漸進(jìn)函數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案