日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正方形ABCD的邊長(zhǎng)為2,AC∩BD=O.將正方形ABCD沿對(duì)角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.

          (1)當(dāng)a=2時(shí),求證:AO⊥平面BCD.
          (2)當(dāng)二面角A-BD-C的大小為120°時(shí),求二面角A-BC-D的正切值.
          (1)見解析   (2)
          (1)根據(jù)題意,在△AOC中,AC=a=2,AO=CO=,
          所以AC2=AO2+CO2,所以AO⊥CO.
          又AO⊥BD,BD∩CO=O,
          所以AO⊥平面BCD.
          (2)方法一:由(1)知,CO⊥OD,以O(shè)為原點(diǎn),OC,OD所在的直線分別為x軸、y軸建立如圖的空間直角坐標(biāo)系Oxyz,

          則有O(0,0,0),D(0,,0),
          C(,0,0),B(0,-,0).
          設(shè)A(x0,0,z0)(x0<0),
          =(x0,0,z0),=(0,,0).
          平面ABD的一個(gè)法向量為n=(z0,0,-x0).
          平面BCD的一個(gè)法向量為m=(0,0,1),且二面角A-BD-C的大小為120°,
          所以|cos<m,n>|=|cos120°|=,得=3.
          因?yàn)镺A=,所以=.解得x0=-,z0=.所以A(-,0,).
          平面ABC的一個(gè)法向量為l=(1,-1,).
          設(shè)二面角A-BC-D的平面角為θ,
          所以cosθ=|cos<l,m>|=||=.
          所以tanθ=.
          所以二面角A-BC-D的正切值為.
          方法二:折疊后,BD⊥AO,BD⊥CO.所以∠AOC是二面角A-BD-C的平面角,即∠AOC=120°.在△AOC中,AO=CO=,所以AC=.
          如圖,過(guò)點(diǎn)A作CO的垂線交CO延長(zhǎng)線于點(diǎn)H,

          因?yàn)锽D⊥CO,BD⊥AO,且CO∩AO=O,所以BD⊥平面AOC.因?yàn)锳H?平面AOC,所以BD⊥AH.
          又CO⊥AH,且CO∩BD=O,所以AH⊥平面BCD.所以AH⊥BC.過(guò)點(diǎn)A作AK⊥BC,垂足為K,連接HK,因?yàn)锽C⊥AH,AK∩AH=A,所以BC⊥平面AHK.因?yàn)镠K?平面AHK,所以BC⊥HK.所以∠AKH為二面角A-BC-D的平面角.
          在△AOH中,得AH=,OH=,所以CH=CO+OH=+=.
          在Rt△CHK中,HK==,
          在Rt△AHK中,tan∠AKH===.
          所以二面角A-BC-D的正切值為.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在長(zhǎng)方體中,點(diǎn)在棱上.

          (1)求異面直線所成的角;
          (2)若二面角的大小為,求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,四棱錐S-ABCD中,ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E為CD上一點(diǎn),且CE=3DE.

          (1)求證:AE⊥平面SBD.
          (2)M,N分別為線段SB,CD上的點(diǎn),是否存在M,N,使MN⊥CD且MN⊥SB,若存在,確定M,N的位置;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在長(zhǎng)方體ABCDA1B1C1D1中,AA1AD=1,ECD的中點(diǎn).

          (1)求證:B1EAD1.
          (2)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
          (3)若二面角AB1EA1的大小為30°,求AB的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          三棱柱ABC-A1B1C1在如圖所示的空間直角坐標(biāo)系中,已知AB=2,AC=4,A1A=3.D是BC的中點(diǎn).

          (1)求直線DB1與平面A1C1D所成角的正弦值;
          (2)求二面角B1-A1D-C1的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,正四面體的頂點(diǎn)分別在兩兩垂直的三條射線上,則在下列命題中,錯(cuò)誤的為(   )
          A.是正三棱錐
          B.直線平面
          C.直線所成的角是
          D.二面角

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,O是底面A1B1C1D1的中心,則點(diǎn)O到平面ABC1D1的距離為    .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,點(diǎn)M在AC1上且=,N為B1B的中點(diǎn),則||為(  )
          A.aB.aC.aD.a

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          若向量a=(1,λ,2),b=(2,-1,2)且ab的夾角的余弦值為,則λ=________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案