日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.

          (1)求直線與平面所成角的正弦值;

          (2)若點(diǎn)M,N分別在AB,PC上,且平面,試確定點(diǎn)M,N的位置.

          【答案】(1);(2MAB的中點(diǎn),NPC的中點(diǎn)

          【解析】

          (1)由題意知,AB,AD,AP兩兩垂直.以為正交基底,建立空間直角坐標(biāo)系,求平面PCD的一個(gè)法向量為,由空間向量的線面角公式求解即可;(2)設(shè) ,利用平面PCD,所以,得到的方程,求解即可確定M,N的位置

          1)由題意知,AB,AD,AP兩兩垂直.

          為正交基底,建立如圖所示的空間

          直角坐標(biāo)系,則

          從而

          設(shè)平面PCD的法向量

          不妨取

          所以平面PCD的一個(gè)法向量為

          設(shè)直線PB與平面PCD所成角為所以

          即直線PB與平面PCD所成角的正弦值為

          2)設(shè)

          設(shè)

          所以.由(1)知,平面PCD的一個(gè)法向量為,因?yàn)?/span>平面PCD,所以

          所以解得,

          所以MAB的中點(diǎn),NPC的中點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義在R上的奇函數(shù)fx),若函數(shù)fx+1)為偶函數(shù),且f1=1,則fi=______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是(  )

          A. 甲的極差是29 B. 甲的中位數(shù)是24

          C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù).

          (1)若不等式解集為,求實(shí)數(shù)的值;

          (2)在(1)的條件下,若不等式解集非空,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)當(dāng)時(shí),求函數(shù)的極值;

          (2)設(shè)函數(shù)處的切線方程為,若函數(shù)上的單調(diào)增函數(shù),求的值;

          (3)是否存在一條直線與函數(shù)的圖象相切于兩個(gè)不同的點(diǎn)?并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中,將底面為直角三角形且側(cè)棱垂直于底面的三棱柱稱之為塹堵;將底面為矩形且一側(cè)棱垂直于底面的四棱錐稱之為陽(yáng)馬;將四個(gè)面均為直角三角形的四面體稱之為鱉臑[biē nào].某學(xué)?茖W(xué)小組為了節(jié)約材料,擬依托校園內(nèi)垂直的兩面墻和地面搭建一個(gè)塹堵形的封閉的實(shí)驗(yàn)室是邊長(zhǎng)為2的正方形.

          1)若是等腰三角形,在圖2的網(wǎng)格中(每個(gè)小方格都是邊長(zhǎng)為1的正方形)畫(huà)出塹堵的三視圖;

          2)若,上,證明:,并回答四面體是否為鱉臑,若是,寫(xiě)出其每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,請(qǐng)說(shuō)明理由;

          3)當(dāng)陽(yáng)馬的體積最大時(shí),求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,分別是橢圓的左,右焦點(diǎn),點(diǎn)P是橢圓E上一點(diǎn),滿足軸,

          1)求橢圓E的離心率;

          2)過(guò)點(diǎn)的直線l與橢圓E交于兩點(diǎn)A,B,若在橢圓B上存在點(diǎn)Q,使得四邊形OAQB為平行四邊形,求直線l的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,棱錐PABCD的底面ABCD是矩形,PA⊥平面ABCDPA=AD=2,BD=.

          1)求證:BD⊥平面PAC;

          2)求二面角PCDB余弦值的大小;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某區(qū)選派7名隊(duì)員代表本區(qū)參加全市青少年圍棋錦標(biāo)賽,其中3名來(lái)自A學(xué)校且1名為女棋手,另外4名來(lái)自B學(xué)校且2名為女棋手從這7名隊(duì)員中隨機(jī)選派4名隊(duì)員參加第一階段的比賽

          求在參加第一階段比賽的隊(duì)員中,恰有1名女棋手的概率;

          設(shè)X為選出的4名隊(duì)員中A、B兩校人數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          同步練習(xí)冊(cè)答案