日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)a,b,c是實(shí)數(shù)(a<b),m,n,p是正實(shí)數(shù),函數(shù)f(x)=(x-a)(x-b);
          (1)證明方程f(x)=p有兩個(gè)不等實(shí)數(shù)根;
          (2)設(shè)(1)中的方程的兩根為α、β(α<β),試確定α、β、a、b四個(gè)數(shù)的大小關(guān)系;
          (3)設(shè)g(x)=f(x)(x-c)-(m+n+p)x+(am+bn+cp),對(duì)于(2)中的α、β請(qǐng)判斷g(α)及g(β)的符號(hào).
          【答案】分析:(1)證明方程f(x)=p有兩個(gè)不等實(shí)數(shù)根,只需要證明方程根的判別式大于0即可;
          (2)方程f(x)=p的兩根為α、β(α<β),即y=f(x)與y=p的圖象交點(diǎn)的橫坐標(biāo)為α、β,又y=f(x)與y=0的圖象交點(diǎn)的橫坐標(biāo)為a,b(a>b),且y=f(x)的圖象開(kāi)口向上,從而可得結(jié)論;
          (3)由題意,(α-a)(α-b)=p,g(α)=(a-α)m+(b-α)n,根據(jù)a>α,b>α,m>0,n>0,可得g(α)>0;同理g(β)=(a-β)m+(b-β)n,根據(jù)a<β,b<β,m>0,n>0,可得g(β)<0.
          解答:(1)證明:由f(x)=p,可化為x2+(a+b)x+ab-p=0
          ∵△=(a+b)2-4(ab-p)=(a-b)2+4p,p>0
          ∴△>0
          故方程f(x)=p有兩個(gè)不等實(shí)數(shù)根
          ( 2)解:方程f(x)=p的兩根為α、β(α<β),即y=f(x)與y=p的圖象交點(diǎn)的橫坐標(biāo)為α、β,又y=f(x)與y=0的圖象交點(diǎn)的橫坐標(biāo)為a,b(a>b),且y=f(x)的圖象開(kāi)口向上,如圖所示,可知α<a<b<β

          (3)解:由題意,(α-a)(α-b)=p
          ∴g(α)=(α-a)(α-b)(α-c)-(m+n+p)α+(am+bn+cp)=(a-α)m+(b-α)n,
          ∵a>α,b>α,m>0,n>0
          ∴g(α)>0
          同理g(β)=(a-β)m+(b-β)n,
          ∵a<β,b<β,m>0,n>0
          ∴g(β)<0
          故g(α)是正數(shù),g(β)是負(fù)數(shù).
          點(diǎn)評(píng):本題以二次函數(shù)為載體,考查方程根的判斷,考查函數(shù)值符號(hào)的確定,同時(shí)考查了數(shù)形結(jié)合的數(shù)學(xué)思想,難度一般.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若有下列命題:①|(zhì)x|2+|x|-2=0有四個(gè)實(shí)數(shù)解;②設(shè)a、b、c是實(shí)數(shù),若二次方程ax2+bx+c=0無(wú)實(shí)根,則ac≥0;③若x2-3x+2≠0,則x≠2,④若x∈R,則函數(shù)y=
          x2+4
          +
          1
          x2+4
          的最小值為2.上述命題中是假命題的有
           

          (寫(xiě)出所有假命題的序號(hào)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)a,b,c是實(shí)數(shù)(a<b),m,n,p是正實(shí)數(shù),函數(shù)f(x)=(x-a)(x-b);
          (1)證明方程f(x)=p有兩個(gè)不等實(shí)數(shù)根;
          (2)設(shè)(1)中的方程的兩根為α、β(α<β),試確定α、β、a、b四個(gè)數(shù)的大小關(guān)系;
          (3)設(shè)g(x)=f(x)(x-c)-(m+n+p)x+(am+bn+cp),對(duì)于(2)中的α、β請(qǐng)判斷g(α)及g(β)的符號(hào).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)a,b,c是實(shí)數(shù),那么對(duì)任何實(shí)數(shù)x,不等式asinx+bcosx+c>0都成立的充要條件是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)高校自主招生數(shù)學(xué)模擬試卷(十七)(解析版) 題型:選擇題

          設(shè)a,b,c是實(shí)數(shù),那么對(duì)任何實(shí)數(shù)x,不等式asinx+bcosx+c>0都成立的充要條件是( )
          A.a(chǎn),b同時(shí)為0,且c>0
          B.=c
          C.<c
          D.>c

          查看答案和解析>>

          同步練習(xí)冊(cè)答案