日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 正方形ABCD在直角坐標(biāo)平面內(nèi),已知其一條邊AB在直線y=x+4上,C,D在拋物線x=y2上,求正方形ABCD的面積.精英家教網(wǎng)
          分析:根據(jù)C,D兩點(diǎn)在拋物線上可設(shè)出C,D的坐標(biāo),根據(jù)直線A,B的方程可知AB與y軸成的夾角,進(jìn)而推斷出角線AC與邊AB也成450角,進(jìn)而推斷出AC∥y軸,和BD∥x軸,設(shè)出A,B的坐標(biāo),根據(jù)AB∥CD,對(duì)角線AC,BD互相垂直平分,聯(lián)立方程求得s和t,則正方形ABCD的面積可求得.
          解答:解:∵C,D兩點(diǎn)在拋物線上,
          ∴可設(shè)C(s2,s),D(t2,,t),
          又∵A,B在直線y=x+4上,∴AB與y軸成450角,
          ∵四邊形ABCD為正方形,
          ∴對(duì)角線AC與邊AB也成450角,
          ∴AC∥y軸,同理BD∥x軸,
          ∴可設(shè)A(s2,s2+4),B(t-4,t)
          ∵AB∥CD,對(duì)角線AC,BD互相垂直平分,所以有
          t-s
          t2-s2
          =1
          (s2+4)+s
          2
          =t
          解得
          s1=-1
          t1=2
          s2=-2
          t2=3

          ∴面積S1=|C1D1|2=[(-1)2-22]2+[(-1)-2]2=18,
          S2=|C2D2|2=[(-1)2-32]2+[(-1)-3]2=50.
          答:這樣的正方形有兩個(gè),其面積分別為18,50.
          點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問(wèn)題.考查了學(xué)生的分析推理和數(shù)形結(jié)合思想的靈活運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=
          2
          ,EF=EC=1,
          (1)求證:平面BEF⊥平面DEF;
          (2)求二面角A-BF-E的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)在如圖所示的多面體中,已知正方形ABCD和
          直角梯形BDEF所在的平面互相垂直,EF∥BD,
          ED⊥BD,AD=
          2
          ,EF=ED=1,點(diǎn)P為線段
          EF上任意一點(diǎn).
          (Ⅰ)求證:CF⊥AP;
          (Ⅱ)求二面角B-AF-E的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,BC⊥AC,EF∥AC,AB=
          2
          ,EF=EC=1.
          (1)求證:AF∥平面BDE;
          (2)求證:DF⊥平面BEF;
          (3)求二面角A-BF-E的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省成都市高三三診模擬考試文科數(shù)學(xué) 題型:解答題

          (12分)

              在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,

           

             (Ⅰ)求證:平面平面DEF;

             (Ⅱ)求二面角A—BF—E的大小。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年四川省高三第三次模擬考試(理) 題型:解答題

          (12分)在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF//AC,

             (1)求證:平面BEF⊥平面DEF;

             (2)求二面角A—BF—E的大小。

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案