日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (12分)在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF//AC,

             (1)求證:平面BEF⊥平面DEF;

             (2)求二面角A—BF—E的大小。

           

          【答案】

          (1)略(2)

          【解析】(1)∵平面ACEF⊥平面ABCD,

          EC⊥AC,∴EC⊥平面ABCD;

          建立如圖所示的空間直角坐標(biāo)系

          ,

                  …………2分

          設(shè)平面BEF、平面DEF的法向量分別為[來源:學(xué)§科§網(wǎng)]

          ,則

                           ①

                                   ②

                           ③

                                   ④

          由①②③④解得

                                          …………4分

          ,

          故平面BEF⊥平面DEF                                                           …………6分

             (2)設(shè)平面ABF的法向量

                                                                                …………8分

                                    …………10分

          由圖知,二面角A—BF—E的平面角是鈍角,

          故所求二面角的大小為          …………12分

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=
          2
          ,EF=EC=1,
          (1)求證:平面BEF⊥平面DEF;
          (2)求二面角A-BF-E的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在如圖所示的多面體中,底面△ABC是邊長為2的正三角形,DA和EC均垂直于平面ABC,且DA=2,EC=1.
          (Ⅰ)求點A到平面BDE的距離;
          (Ⅱ)求二面角B-ED-A的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在如圖所示的多面體中,已知正方形ABCD和
          直角梯形BDEF所在的平面互相垂直,EF∥BD,
          ED⊥BD,AD=
          2
          ,EF=ED=1,點P為線段
          EF上任意一點.
          (Ⅰ)求證:CF⊥AP;
          (Ⅱ)求二面角B-AF-E的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•日照一模)在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點.
          (1)求證:BD⊥EG;
          (2)求平面DEG與平面DEF所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在如圖所示的多面體中,AA1∥BB1,CC1⊥AC,CC1⊥BC.
          (1)求證:CC1⊥AB;
          (2)求證:CC1∥AA1

          查看答案和解析>>

          同步練習(xí)冊答案