如圖,在四棱錐中,
為平行四邊形,且
,
,
為
的中點(diǎn),
,
.
(Ⅰ)求證://
;
(Ⅱ)求三棱錐的高.
(Ⅰ)詳見解析;(Ⅱ).
解析試題分析:(Ⅰ)連接,設(shè)
與
相交于點(diǎn)
,連接
,根據(jù)
為
的中位線便可得出結(jié)論;(Ⅱ)由條件證明
,
,再 利用等體積法求得,即
.
試題解析:
(Ⅰ)證明:連接,設(shè)
與
相交于點(diǎn)
,連接
,
∵ 四邊形是平行四邊形,∴點(diǎn)
為
的中點(diǎn).
∵為
的中點(diǎn), ∴
為
的中位線,
∴. 2分
∵,
∴//
. 4分
(Ⅱ)解:∵平面
,
,
則平面
,故
,
又, 且
,
∴. 8分
取的中點(diǎn)
,連接
,則
,
∴,且
. 9分
設(shè)三棱錐的高為
,由
,
有,得
. 12分
考點(diǎn):四棱錐的性質(zhì),空間中的線線平行與垂直,線面平行與垂直,二面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知矩形,
,點(diǎn)
是
的中點(diǎn),將△
沿
折起到△
的位置,使二面角
是直二面角.
(1)證明:⊥面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF^PB交PB于點(diǎn)F,
(1)求證:PA//平面EDB;
(2)求證:PB^平面EFD;
(3)求二面角C-PB-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(如圖,在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,對角線AC與BD相交于點(diǎn)O,PO為四棱錐P﹣ABCD的高,且,E、F分別是BC、AP的中點(diǎn).
(1)求證:EF∥平面PCD;
(2)求三棱錐F﹣PCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,
是正三角形,四邊形
是矩形,且平面
平面
,
,
.
(Ⅰ)若點(diǎn)是
的中點(diǎn),求證:
平面
;
(II)試問點(diǎn)在線段
上什么位置時(shí),二面角
的余弦值為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點(diǎn).
(1)求證:平面PAC⊥平面PBC;(6分)
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱
底面ABCD,
,E是PC的中點(diǎn).
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com