【題目】已知橢圓的左右焦點分別為
,其焦距為
,點
在橢圓
上,
,直線
的斜率為
(
為半焦距)·
(1)求橢圓的方程;
(2)設(shè)圓的切線
交橢圓
于
兩點(
為坐標原點),求證:
;
(3)在(2)的條件下,求的最大值
【答案】(1);(2)見解析;(3)
【解析】
(1)由題意知 ,
,解得
即可.
(2)(i)當切線與坐標軸垂直時,滿足,(ii)當切線與坐標軸不垂直時,設(shè)圓的切線為y=kx+m,得
,A(x1,y1),B(x2,y2),利用
,即可證明.
(3 )當切線與坐標軸垂直時|OA||OB|=4,當切線與坐標軸不垂直時,由(2)知,且
,即可得OA|
|OB|的最大值.
(1)連接,由題意知
,
設(shè)
即
解得
,
橢圓的方程為
.
(2)(i)當切線與坐標軸垂直時,交點坐標為,滿足
.
(ii)當切線與坐標軸不垂直時,設(shè)切線為
由圓心到直線距離為
聯(lián)立橢圓方程得
恒成立,設(shè)
滿足 .
(3 )當切線與坐標軸垂直時
當切線與坐標軸不垂直時,由(2)知
.
令
當且僅當時等號成立,
綜上所述,的最大值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓為其左右焦點,
為其上下頂點,四邊形
的面積為
.點
為橢圓
上任意一點,以
為圓心的圓(記為圓
)總經(jīng)過坐標原點
.
(1)求橢圓的長軸
的最小值,并確定此時橢圓
的方程;
(2)對于(1)中確定的橢圓,若給定圓
,則圓
和圓
的公共弦
的長是否為定值?如果是,求
的值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的雙曲線的標準方程:
(1)一條漸近線方程為,且與橢圓
有相同的焦點;
(2)經(jīng)過點,且與雙曲線
有共同的漸近線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊半徑為20米,圓心角的扇形展示臺,展示臺分成了四個區(qū)域:三角形
,弓形
,扇形
和扇形
(其中
).某次菊花展依次在這四個區(qū)域擺放:泥金香、紫龍臥雪、朱砂紅霜、朱砂紅霜.預(yù)計這三種菊花展示帶來的日效益分別是:泥金香50元/米
,紫龍臥雪30元/米
,朱砂紅霜40元/米
.
(1)設(shè),試建立日效益總量
關(guān)于
的函數(shù)關(guān)系式;
(2)試探求為何值時,日效益總量達到最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班對一次實驗成績進行分析,利用隨機數(shù)表法抽取樣本時,先將50個同學(xué)按01,02.03,…50進行編號,然后從隨機數(shù)表第9行第11列的數(shù)開始向右讀,則選出的第6個個體是( )(注:表為隨機數(shù)表的第8行和第9行)
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
A.00B.13C.42D.44
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某地區(qū)年齡在25~55歲的人員中,隨機抽出100人,了解他們對今年兩會的熱點問題的看法,繪制出頻率分布直方圖如圖所示,則下列說法正確的是( )
A. 抽出的100人中,年齡在40~45歲的人數(shù)大約為20
B. 抽出的100人中,年齡在35~45歲的人數(shù)大約為30
C. 抽出的100人中,年齡在40~50歲的人數(shù)大約為40
D. 抽出的100人中,年齡在35~50歲的人數(shù)大約為50
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,設(shè)為不同的兩點,直線
的方程為
,設(shè)
,其中
均為實數(shù).下列四個說法中:
①存在實數(shù),使點
在直線
上;
②若,則過
兩點的直線與直線
重合;
③若,則直線
經(jīng)過線段
的中點;
④若,則點
在直線
的同側(cè),且直線
與線段
的延長線相交.
所有結(jié)論正確的說法的序號是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷中正確的是( )
A.在中,“
”的充要條件是“
,
,
成等差數(shù)列”
B.“”是“
”的充分不必要條件
C.命題:“
,使得
”,則
的否定:“
,都有
”
D.若平面內(nèi)一動點到定點的距離等于它到定直線的距離,則該動點的軌跡是一條拋物線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,圓
:
,直線
:
,直線
過點
,傾斜角為
,以原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)寫出直線與圓
的交點極坐標及直線
的參數(shù)方程;
(2)設(shè)直線與圓
交于
,
兩點,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com