日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知菱形的對(duì)角線,交于點(diǎn),,將沿折起,使點(diǎn)到達(dá)點(diǎn)位置,滿(mǎn)足為等邊三角形.

          (1)求證:

          (2)求二面角的余弦值.

          【答案】(1)見(jiàn)證明;(2)

          【解析】

          1)根據(jù)菱形對(duì)角線互相垂直,可知翻折后,根據(jù)線面垂直判定定理可得平面,利用線面垂直性質(zhì)定理證得結(jié)論;(2)根據(jù)線面垂直判定定理可證得,則以為原點(diǎn)可建立起空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值.

          (1)證明:由已知,翻折后,

          平面,又平面

          (2)在菱形中,,

          ,

          中點(diǎn),連結(jié),則

          .

          ,

          為原點(diǎn),軸,軸,過(guò)點(diǎn)的平行線為軸,建立如圖所示的空間直角坐標(biāo)系

          ,,,

          設(shè)平面的法向量為

          ,令,則,

          平面的一個(gè)法向量為.

          又平面的一個(gè)法向量

          又二面角為銳角

          二面角的余弦值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近年,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿(mǎn)分各150分,另外考生還要依據(jù)想考取的高校及專(zhuān)業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)參加考試(63),每科目滿(mǎn)分100.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

          1)已知抽取的名學(xué)生中含男生55人,求的值;

          2)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;

          3)在抽取到的女生中按(2)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及期望.

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義域?yàn)?/span>的函數(shù)(常數(shù)).

          (1)若,求函數(shù)的單調(diào)區(qū)間;

          (2)若恒成立,求實(shí)數(shù)的最大整數(shù)值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知斜率為1的直線與橢圓交于,兩點(diǎn),且線段的中點(diǎn)為,橢圓的上頂點(diǎn)為.

          (1)求橢圓的離心率;

          (2)設(shè)直線與橢圓交于兩點(diǎn),若直線的斜率之和為2,證明:過(guò)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,橢圓經(jīng)過(guò)點(diǎn),離心率為. 已知過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn)

          (1)求橢圓的方程;

          (2)試問(wèn)軸上是否存在定點(diǎn),使得為定值.若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.

          (1)求該拋物線的方程;

          (2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】己知函數(shù)是函數(shù)值不恒為零的奇函數(shù),函數(shù)

          1)求實(shí)數(shù)的值,并判斷函數(shù)的單調(diào)性;

          2)解關(guān)于的不等式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某工廠產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,規(guī)定排放時(shí)污染物的殘留含量不得超過(guò)1%.已知在過(guò)濾過(guò)程中的污染物的殘留數(shù)量P(單位:毫克/升)與過(guò)濾時(shí)間t(單位:小時(shí))之間的函數(shù)關(guān)系為:為正常數(shù),為原污染物數(shù)量).若前5個(gè)小時(shí)廢氣中的污染物被過(guò)濾掉了90%,那么要能夠按規(guī)定排放廢氣,至少還需要過(guò)濾(

          A. 小時(shí)B. 小時(shí)C. 5小時(shí)D. 小時(shí)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】“2019是一個(gè)重要的時(shí)間節(jié)點(diǎn)——中華人民共和國(guó)成立70周年,和全面建成小康社會(huì)的 關(guān)鍵之年.70年披荊斬棘,70年砥礪奮進(jìn),70年風(fēng)雨兼程,70年滄桑巨變,勤勞勇敢的中國(guó) 人用自己的雙手創(chuàng)造了一項(xiàng)項(xiàng)輝煌的成績(jī),取得了舉世矚目的成就.趁此良機(jī),李明在天貓網(wǎng)店銷(xiāo)售新中國(guó)成立70周年紀(jì)念冊(cè),每本紀(jì)念冊(cè)進(jìn)價(jià)4元,物流費(fèi)、管理費(fèi)共為/本,預(yù)計(jì)當(dāng)每本紀(jì)念冊(cè)的售價(jià)為元(時(shí),月銷(xiāo)售量為千本.

          (I)求月利潤(rùn)(千元)與每本紀(jì)念冊(cè)的售價(jià)X的函數(shù)關(guān)系式,并注明定義域:

          (II)當(dāng)為何值時(shí),月利潤(rùn)最大?并求出最大月利潤(rùn).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案