日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (Ⅰ)若曲線處的切線與直線垂直,求直線的方程;

          (Ⅱ)當(dāng)時(shí),且,證明:.

          【答案】(Ⅰ)(Ⅱ)見證明

          【解析】

          (Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求出參數(shù),再根據(jù)點(diǎn)斜式方程得到直線的方程.(Ⅱ)由題意得函數(shù)上單調(diào)遞減,在上單調(diào)遞增,且當(dāng)時(shí),.不妨設(shè),此時(shí).故要證,只需證,只需證,然后構(gòu)造函數(shù),可證得時(shí),單調(diào)遞減,進(jìn)而可得結(jié)論成立.

          (Ⅰ)解:∵,

          ,

          ∵切線與直線垂直,

          ,故

          ,

          ∴直線方程為,即

          (Ⅱ)證明:

          由(Ⅰ)知

          ∴當(dāng)時(shí),;當(dāng)時(shí),

          ∴函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

          ,

          ∴當(dāng)時(shí),

          根據(jù)題意不妨設(shè),此時(shí),

          故要證,

          只需證,

          只需證

          因?yàn)?/span>,故 只需證

          設(shè)

          ,

          ∴當(dāng)時(shí),單調(diào)遞減,

          時(shí),,

          ∴當(dāng)時(shí),,

          ,

          又函數(shù)上單調(diào)遞增,

          ,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四棱臺(tái)中,底面,四邊形為菱形,,.

          (1)若中點(diǎn),求證:平面;

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】方格表的每個(gè)方格任意填入,然后允許進(jìn)行如下操作每次任意選擇一行或列,將這一行或列中的數(shù)全部變號(hào).若無論開始時(shí)方格表的數(shù)怎樣填,總能經(jīng)過不超過次操作,使得方格表每一行中所有數(shù)的和、每一列中所有數(shù)的和均非負(fù).試確定的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù);

          2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上,離心率,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為, 直線ly軸交于點(diǎn)P0,m),與橢圓C交于相異兩點(diǎn)A、B,且.

          1)求橢圓方程;

          2)求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)外接圓上三段弧的中點(diǎn)依次為,其關(guān)于的對(duì)稱點(diǎn)依次為.若頂點(diǎn)與對(duì)應(yīng)旁切圓切點(diǎn)的連線交于一點(diǎn) (界心),的垂心,證明:在以為直徑的圓上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)x2mlnxh(x)x2xa.

          (1)當(dāng)a0時(shí),f(x)h(x)(1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;

          (2)當(dāng)m2時(shí),若函數(shù)k(x)f(x)h(x)在區(qū)間(1,3)上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為抗擊新冠病毒,某部門安排甲、乙、丙、丁、戊五名專家到三地指導(dǎo)防疫工作.因工作需要,每地至少需安排一名專家,其中甲、乙兩名專家必須安排在同一地工作,丙、丁兩名專家不能安排在同一地工作,則不同的分配方法總數(shù)為(

          A.18B.24C.30D.36

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在校園籃球賽中,甲、乙兩個(gè)隊(duì)10場比賽的得分?jǐn)?shù)據(jù)整理成如圖所示的莖葉圖,下列說法正確的是(

          A.乙隊(duì)得分的中位數(shù)是38.5

          B.甲、乙兩隊(duì)得分在分?jǐn)?shù)段頻率相等

          C.乙隊(duì)的平均得分比甲隊(duì)的高

          D.甲隊(duì)得分的穩(wěn)定性比乙隊(duì)好

          查看答案和解析>>

          同步練習(xí)冊(cè)答案