已知二次函數(shù)的最小值為1,且
.
(1)求的解析式;
(2)若在區(qū)間
上不單調(diào),求實(shí)數(shù)
的取值范圍;
(3)在區(qū)間上,
的圖像恒在
的圖像上方,試確定實(shí)數(shù)
的取值范圍.
(1)(2)
(3)
【解析】
試題分析:(1)由已知,設(shè),由
,得
,
故
(2)要使函數(shù)不單調(diào),則,則
即為所求
(3)由已知,即,化簡得
,
設(shè),則只要
,
而,得
為所求.
考點(diǎn):求函數(shù)解析式及函數(shù)單調(diào)性最值等性質(zhì)
點(diǎn)評(píng):本題中函數(shù)是二次函數(shù),有增減兩個(gè)單調(diào)區(qū)間,以對(duì)稱軸為分界處,因此第二問可知對(duì)稱軸在區(qū)間內(nèi),第三問將圖像的位置關(guān)系轉(zhuǎn)化為函數(shù)間的大小關(guān)系,進(jìn)而將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,這種轉(zhuǎn)化思路在函數(shù)題目中經(jīng)常出現(xiàn),是常考點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2016屆四川成都樹德中學(xué)高一10月階段性考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知二次函數(shù)的最小值為
,且關(guān)于
的一元二次不等式
的解集為
。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)其中
,求函數(shù)
在
時(shí)的最大值
;
(Ⅲ)若(
為實(shí)數(shù)),對(duì)任意
,總存在
使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省廈門市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知二次函數(shù)的最小值為1,且
。
(1)求的解析式;
(2)若在區(qū)間
上不單調(diào),求實(shí)數(shù)
的取值范圍;
(3)在區(qū)間上,
的圖象恒在
的圖象上方,試確定實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江湖州高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
已知二次函數(shù)的最小值為1,且
.
(1)求的解析式;
(2)若在區(qū)間
上不單調(diào),求實(shí)數(shù)
的取值范圍;
(3)在區(qū)間上,
的圖象恒在
的圖象上方,試確定實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省淮安市高一第一學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)已知二次函數(shù)的最小值為1,且
.
(1)求的解析式;
(2)若在區(qū)間
上單調(diào),求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com