日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          (12分)已知△ABC的三個項點坐標分別是A(4,1),B(6,-3),C(-3,0),求△ABC外接圓的方程.

           

          【答案】

          【解析】

          試題分析:解法一:設所求圓的方程是. ①

          因為A(4,1),B(6,-3),C(-3,0)都在圓上,

          所以它們的坐標都滿足方程①,于是

            可解得

          所以△ABC的外接圓的方程是

          解法二:因為△ABC外接圓的圓心既在AB的垂直平分線上,也在BC的垂直平分線上,所以先求AB、BC的垂直平分線方程,求得的交點坐標就是圓心坐標.

          ,

          線段AB的中點為(5,-1),線段BC的中點為

          ∴AB的垂直平分線方程為, ①

          BC的垂直平分線方程.    ②

          解由①②聯立的方程組可得∴△ABC外接圓的圓心為E(1,-3),

          半徑

          故△ABC外接圓的方程是

          考點:本題主要考查圓的方程求法。

          點評:求圓的方程,常用待定系數法,根據條件設出標準方程或一般方程。有時利用幾何特征,解答更為簡便。

           

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:044

          已知△ABC的三個內角滿足等式sin2B+sin2C=sin2AtanB等于()8展開式中第3項的系數,試判斷該三角形的形狀.

          查看答案和解析>>

          科目:高中數學 來源:數學教研室 題型:044

          已知△ABC的三個內角滿足等式sin2B+sin2C=sin2AtanB等于()8展開式中第3項的系數,試判斷該三角形的形狀.

          查看答案和解析>>

          科目:高中數學 來源:河北省邢臺一中2011-2012學年高一下學期期末考試數學試題 題型:044

          已知△ABC的三個角A,B,C的對邊分別為a,b,c,且A,B,C成等差數列,且.數列{an}是等比數列,且首項,公比為

          (1)求數列{an}的通項公式;

          (2)若,求數列{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (12分)已知△ABC的三個項點坐標分別是A(4,1),B(6,-3),C(-3,0),求

              △ABC外接圓的方程.

          查看答案和解析>>