日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知在長(zhǎng)方體中,點(diǎn)為棱上任意一點(diǎn),,.

          (Ⅰ)求證:平面平面;
          (Ⅱ)若點(diǎn)為棱的中點(diǎn),點(diǎn)為棱的中點(diǎn),求二面角的余弦值.
          (Ⅰ)詳見解析;(Ⅱ)二面角的余弦值為

          試題分析:(Ⅰ)求證:平面平面,證明兩個(gè)平面垂直,只需證明一個(gè)平面過另一個(gè)平面的垂線即可,由長(zhǎng)方體的性質(zhì),易證平面,從而可證平面平面;(Ⅱ)若點(diǎn)為棱的中點(diǎn),點(diǎn)為棱的中點(diǎn),求二面角的余弦值,求二面角問題,可用傳統(tǒng)方法,找二面角的平面角,但本題不易找,另一種方法,用向量法,本題因?yàn)槭情L(zhǎng)方體,容易建立空間坐標(biāo)系,以軸,以軸,以軸建立空間直角坐標(biāo)系,分別設(shè)出兩個(gè)平面的法向量,利用向量的運(yùn)算,求出向量,即可求出二面角的余弦值.
          試題解析:(Ⅰ)為正方形                      2分
          平面                         4分
          ,平面  平面平面      6分
          (Ⅱ)建立以軸,以軸,以軸的空間直角坐標(biāo)系     7分
          設(shè)平面的法向量為,
                              9分
          設(shè)平面的法向量為,
                                11分
                                       13分
          二面角的余弦值為                     14分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          平行四邊形中,為折線,把折起,使平面平面,連接

          (1)求證:;
          (2)求二面角 的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知四棱錐的底面是正方形,底面,上的任意一點(diǎn).

          (1)求證:平面平面
          (2)當(dāng)時(shí),求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.

          (Ⅰ)求異面直線EF與BC所成角的大;
          (Ⅱ)若二面角A-BF-D的平面角的余弦值為,求AB的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE.

          (1) 證明:BD⊥平面PAC;
          (2) 若PA=1,AD=2,求二面角B-PC-A的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,在平行六面體ABCD-A1B1C1D1中,O為AC與BD的交點(diǎn),若
          A1B1
          =
          a
          A1D1
          =
          b
          ,
          AA1
          =
          c
          ,則向量
          B1O
          等于( 。
          A.
          1
          2
          a
          +
          1
          2
          b
          +
          c
          B.
          1
          2
          a
          -
          1
          2
          b
          +
          c
          C.-
          1
          2
          a
          +
          1
          2
          b
          +
          c
          D.-
          1
          2
          a
          -
          1
          2
          b
          +
          c

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          在平面直角坐標(biāo)系中,設(shè)A(-2,3),B(3,-2),沿軸把直角坐標(biāo)平面折成大小為的二面角后,這時(shí)則的大小為     

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          正方體ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐的底面是正方形,⊥平面,,點(diǎn)ESD上的點(diǎn),且.
          (1)求證:對(duì)任意的,都有ACBE;
          (2)若二面角C-AE-D的大小為,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案