【題目】已知橢圓的右頂點(diǎn)與拋物線
的焦點(diǎn)重合,橢圓
的離心率為
,過(guò)橢圓
的右焦點(diǎn)
且垂直于
軸的直線截拋物線所得的弦長(zhǎng)為.
(1)求橢圓和拋物線
的方程;
(2)過(guò)點(diǎn)的直線
與
交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱(chēng)點(diǎn)為
,證明:直線
恒過(guò)一定點(diǎn).
【答案】(1)橢圓的方程為
,拋物線
的方程為
;(2)見(jiàn)解析.
【解析】試題分析:
(1)由題意可知,結(jié)合橢圓的性質(zhì)得到關(guān)于a,b,c的方程組,求解方程組可知橢圓
的方程為
,拋物線
的方程為
.
(2)由題意設(shè)直在x軸的截距方程: ,聯(lián)立直線方程與拋物線方程可得
,結(jié)合斜率公式可得直線
的方程為
,整理變形即:
,據(jù)此可知直線
恒過(guò)定點(diǎn)
.
試題解析:
(1)設(shè)橢圓的半焦距為
,依題意,可得
,則
,
代入,得
,即
,所以
,
則有,
所以橢圓的方程為
,拋物線
的方程為
.
(2)依題意,可知直線的斜率不為0,可設(shè)
,
聯(lián)立 ,得
,設(shè)
,則
,
,得
或
,
,
所以直線的斜率
,
可得直線的方程為
,
即
,所以當(dāng)
或
時(shí),直線
恒過(guò)定點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
②若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
過(guò)點(diǎn)
,
,
分別是橢圓的左、右焦點(diǎn),以原點(diǎn)為圓心,橢圓
的短軸長(zhǎng)為直徑的圓與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的直線
交橢圓
于
,
,求
內(nèi)切圓面積的最大值和此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,
平面
,
,
.過(guò)
的平面交
于點(diǎn)
,交
于點(diǎn)
.
(l)求證: 平面
;
(Ⅱ)求證:四邊形為平行四邊形;
(Ⅲ)若是,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)求曲線在點(diǎn)
處的切線的斜率;
(Ⅱ)判斷方程(
為
的導(dǎo)數(shù))在區(qū)間
內(nèi)的根的個(gè)數(shù),說(shuō)明理由;
(Ⅲ)若函數(shù)在區(qū)間
內(nèi)有且只有一個(gè)極值點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形中,
,上底
,下底
,點(diǎn)
為下底
的中點(diǎn),現(xiàn)將該梯形中的三角形
沿線段
折起,形成四棱錐
.
(1)在四棱錐中,求證:
;
(2)若平面與平面
所成二面角的平面角為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(1)當(dāng)時(shí),求函數(shù)
的圖象在
處的切線方程;
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求經(jīng)過(guò)橢圓右焦點(diǎn)
且與直線
垂直的直線的極坐標(biāo)方程;
(2)若為橢圓
上任意-點(diǎn),當(dāng)點(diǎn)
到直線
距離最小時(shí),求點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: 的焦點(diǎn)在x軸上,A是E的左頂點(diǎn),斜率為k(k>0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(1)當(dāng)t=4,|AM|=|AN|時(shí),求△AMN的面積;
(2)當(dāng)2|AM|=|AN|時(shí),求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com