【題目】已知三棱錐的所有棱長(zhǎng)都相等,若
與平面
所成角等于
,則平面
與平面
所成角的正弦值的取值范圍是( )
A.B.
C.D.
【答案】A
【解析】
設(shè)出三棱錐的邊長(zhǎng),設(shè)
是
的中點(diǎn),求得
和
,由此判斷出
.設(shè)平面
與平面
所成二面角的平面角為
,由
和
,結(jié)合三角函數(shù)恒等變換,求得
的取值范圍,由此得出正確選項(xiàng).
如圖,在三棱錐中,
是
的中點(diǎn),不妨設(shè)其邊長(zhǎng)為2,則
,∴
.根據(jù)余弦定理,有
,∴
,∴
.由題可知當(dāng)平面
與平面
所成二面角的平面角
取最值時(shí),平面
平面
.
當(dāng)最小時(shí),
與平面
所成角為
,則
與平面
的法向量
所成角為
,∴
與
所成角為
,而平面
與平面
所成角為
,∴
;
當(dāng)最大時(shí),
與平面
所成角為
,則
與平面
的法向量
所成角為
∴
與
所成角為
,而平面
與平面
所成角為
,∴
.
∴平面與平面
所成角的正弦值的取值范圍為
.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代《九章算術(shù)》中將上,下兩面為平行矩形的六面體稱為芻童.如圖的芻童有外接球,且
,
,
,
,平面
與平面
間的距離為
,則該芻童外接球的體積為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),對(duì)于任意
,總存在
,使得
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年1月,某公司以問卷的形式調(diào)查影響員工積極性的六項(xiàng)關(guān)鍵指標(biāo):績(jī)效獎(jiǎng)勵(lì)、排班制度、激勵(lì)措施、工作環(huán)境、人際關(guān)系、晉升渠道,在確定各項(xiàng)指標(biāo)權(quán)重結(jié)果后,進(jìn)而得到指標(biāo)重要性分析象限圖(如圖).若客戶服務(wù)中心從中任意抽取不同的兩項(xiàng)進(jìn)行分析,則這兩項(xiàng)來自影響稍弱區(qū)的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線
的參數(shù)方程:
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程;
(2)過曲線上一點(diǎn)
作直線
與曲線
交于
兩點(diǎn),中點(diǎn)為
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn)
,焦點(diǎn)在
軸上,左右焦點(diǎn)分別為
,
,離心率為
,右焦點(diǎn)到右頂點(diǎn)的距離為1.
(1)求橢圓的方程;
(2)過 的直線
與橢圓
交于不同的兩點(diǎn)
,
,則
的面積是否存在最大值?若存在,求出這個(gè)最大值及直線
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,在多面體中,底面
是邊長(zhǎng)為
的的菱形,
,四邊形
是矩形,平面
平面
,
,
和
分別是
和
的中點(diǎn).
(Ⅰ)求證:平面平面
;
(Ⅱ)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)).
(1)求曲線的參數(shù)方程與直線
的普通方程;
(2)設(shè)點(diǎn)過為曲線
上的動(dòng)點(diǎn),點(diǎn)
和點(diǎn)
為直線
上的點(diǎn),且滿足
為等邊三角形,求
邊長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為比較甲,乙兩地某月時(shí)的氣溫,隨機(jī)選取該月中的
天,將這
天中
時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:①甲地該月
時(shí)的平均氣溫低于乙地該月
時(shí)的平均氣溫;②甲地該月
時(shí)的平均氣溫高于乙地該月
時(shí)的平均氣溫;③甲地該月
時(shí)的氣溫的中位數(shù)小于乙地該月
時(shí)的氣溫的中位數(shù);④甲地該月
時(shí)的氣溫的中位數(shù)大于乙地該月
時(shí)的氣溫的中位數(shù).其中根據(jù)莖葉圖能得到的正確結(jié)論的編號(hào)為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com