日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2-(a+2)x+alnx.
          (Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極小值;
          (Ⅱ)當(dāng)a=-1時,過坐標(biāo)原點O作曲線y=f(x)的切線,設(shè)切點為P(m,n),求實數(shù)m的值;
          (Ⅲ)設(shè)定義在D上的函數(shù)y=g(x)在點P(x0,y0)處的切線方程為l:y=h(x),當(dāng)x≠x0時,若數(shù)學(xué)公式>0在D內(nèi)恒成立,則稱P為函數(shù)y=g(x)的“轉(zhuǎn)點”.當(dāng)a=8時,試問函數(shù)y=f(x)是否存在“轉(zhuǎn)點”.若存在,請求出“轉(zhuǎn)點”的橫坐標(biāo),若不存在,請說明理由.

          解:(Ⅰ)當(dāng)a=1時,f′(x)=2x-3+==,…2分
          當(dāng)0<x時,f′(x)>0;當(dāng)<x<1時,f′(x)<0;當(dāng)x>1時,f′(x)>0.
          所以當(dāng)x=1時,函數(shù)f(x)取極小值f(1)=-2,…5分;
          (Ⅱ)當(dāng)a=-1時,f′(x)=2x-1-(x>0),所以切線的斜率
          k=2m-1-===,整理可得m2+lnm-1=0,
          顯然m=1是方程的解,又因為函數(shù)y=x2+lnx-1在(0,+∞)上是增函數(shù),
          所以方程有唯一的實數(shù)解,即m=1,…10分;
          (Ⅲ)當(dāng)a=8時,函數(shù)y=f(x)在其圖象上一點P(x0,y0)處的切線方程為:
          h(x)=,
          設(shè)F(x)=f(x)-h(x),則F(x0)=0,F(xiàn)′(x)=f′(x)-h′(x)
          =()-()=(x-x0)(x-
          若0<x0<2,F(xiàn)(x)在(x0,)上單調(diào)遞減,所以當(dāng)x∈(x0,)時,
          F(x)<F(x0)=0,此時<0,
          若x0>2,F(xiàn)(x)在(,x0)上單調(diào)遞減,所以當(dāng)x∈(,x0)時,
          F(x)>F(x0)=0,此時<0,
          所以y=f(x)在(0,2)和(2,+∞)上不存在“轉(zhuǎn)點”,
          若x0=2時,F(xiàn)′(x)=,即F(x)在(0,+∞)上是增函數(shù),
          當(dāng)x>x0時,F(xiàn)(x)>F(x0)=0,當(dāng)x<x0時,F(xiàn)(x)<F(x0)=0,
          故點P(x0,f(x0))為“轉(zhuǎn)點”,
          故函數(shù)y=f(x)存在“轉(zhuǎn)點”,且2是“轉(zhuǎn)點”的橫坐標(biāo),…15分
          分析:(Ⅰ)把a=1代入可得函數(shù)的導(dǎo)數(shù),進(jìn)而可得單調(diào)區(qū)間,可得極小值;
          (Ⅱ)把a=-1代入,可得切線斜率,由斜率公式還可得斜率,由等式可得m=1是唯一的實數(shù)解;
          (Ⅲ)針對新定義,構(gòu)造函數(shù)F(x)=f(x)-h(x),求其導(dǎo)數(shù),分0<x0<2,x0>2,x0=2三種情況進(jìn)行討論,可得結(jié)論.
          點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,涉及新定義,屬中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案