日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          13
          x3+mx2-3m2x+1
          ,m∈R.
          (1)當(dāng)m=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
          (2)若f(x)在區(qū)間(-2,3)上是減函數(shù),求m的取值范圍.
          分析:(Ⅰ)把m=1代入到f(x)中化簡(jiǎn)得到f(x)的解析式,求出f'(x),因?yàn)榍的切點(diǎn)為(2,f(2)),所以把x=2代入到f'(x)中求出切線的斜率,把x=2代入到f(x)中求出f(2)的值得到切點(diǎn)坐標(biāo),根據(jù)切點(diǎn)和斜率寫出切線方程即可;
          (2)已知f(x)在區(qū)間(-2,3)上是減函數(shù),即f′(x)≤0在區(qū)間(-2,3)上恒成立,然后用導(dǎo)數(shù)求f(x)的單調(diào)遞減區(qū)間,再對(duì)m進(jìn)行分類討論建立關(guān)于m的不等關(guān)系解之即可得到m的取值范圍.
          解答:解:(1)當(dāng)m=1時(shí),f(x)=
          1
          3
          x3+x2-3x+1
          ,
          又f'(x)=x2+2x-3,所以f'(2)=5.
          f(2)=
          5
          3
          ,
          所以所求切線方程為 y-
          5
          3
          =5(x-2)
          ,即15x-3y-25=0.
          所以曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為15x-3y-25=0.…(6分)
          (2)因?yàn)閒'(x)=x2+2mx-3m2,
          令f'(x)=0,得x=-3m或x=m.…(8分)
          當(dāng)m=0時(shí),f'(x)=x2≥0恒成立,不符合題意.…(9分)
          當(dāng)m>0時(shí),f(x)的單調(diào)遞減區(qū)間是(-3m,m),若f(x)在區(qū)間(-2,3)上是減函數(shù),
          -3m≤-2
          m≥3.
          解得m≥3.…(11分)
          當(dāng)m<0時(shí),f(x)的單調(diào)遞減區(qū)間是(m,-3m),若f(x)在區(qū)間(-2,3)上是減函數(shù),
          m≤-2
          -3m≥3.
          ,解得m≤-2.
          綜上所述,實(shí)數(shù)m的取值范圍是m≥3或m≤-2.…(13分)
          點(diǎn)評(píng):考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,會(huì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及根據(jù)函數(shù)的增減性得到函數(shù)的極值.靈活運(yùn)用分類討論的數(shù)學(xué)思想解決數(shù)學(xué)問題.本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,導(dǎo)數(shù)的引入,為研究高次函數(shù)的極值與最值帶來了方便.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)、已知函數(shù)f(x)=
          1+
          2
          cos(2x-
          π
          4
          )
          sin(x+
          π
          2
          )
          .若角α在第一象限且cosα=
          3
          5
          ,求f(α)

          (2)函數(shù)f(x)=2cos2x-2
          3
          sinxcosx
          的圖象按向量
          m
          =(
          π
          6
          ,-1)
          平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=(1-
          a
          x
          )ex
          ,若同時(shí)滿足條件:
          ①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
          ②?x∈(8,+∞),f(x)>0.
          則實(shí)數(shù)a的取值范圍是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+lnx
          x

          (1)如果a>0,函數(shù)在區(qū)間(a,a+
          1
          2
          )
          上存在極值,求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)x≥1時(shí),不等式f(x)≥
          k
          x+1
          恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+
          1
          x
          ,(x>1)
          x2+1,(-1≤x≤1)
          2x+3,(x<-1)

          (1)求f(
          1
          2
          -1
          )
          與f(f(1))的值;
          (2)若f(a)=
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在D上的函數(shù)f(x)如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
          1-m•2x1+m•2x

          (1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說明理由;
          (2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案