日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓
          x2
          4
          +
          y2
          3
          =1
          ,能否在此橢圓位于y軸左側(cè)的部分上找到一點(diǎn)M,使它到左準(zhǔn)線的距離為它到兩焦點(diǎn)F1,F(xiàn)2距離的等差中項(xiàng),若能找到,求出該點(diǎn)的坐標(biāo),若不能找到,請(qǐng)說(shuō)明理由.
          分析:過(guò)點(diǎn)M作左準(zhǔn)線的垂線MA交左準(zhǔn)線于A,由M點(diǎn)到左準(zhǔn)線的距離為它到兩焦點(diǎn)F1,F(xiàn)2距離的等差中項(xiàng)知2|MA|=|MF1|+|MF2|,此結(jié)合題設(shè)條件能夠推導(dǎo)出|MA|=2,從而導(dǎo)出M點(diǎn)的坐標(biāo).
          解答:解:在橢圓
          x2
          4
          +
          y2
          3
          =1
          位于y軸左側(cè)的部分上有一點(diǎn)M,它到左準(zhǔn)線的距離為它到兩焦點(diǎn)F1,F(xiàn)2距離的等差中項(xiàng).
          過(guò)點(diǎn)M作左準(zhǔn)線的垂線MA交左準(zhǔn)線于A,則2|MA|=|MF1|+|MF2|.
          a=2,c=1,e=
          1
          2
          ,
          ∴2|MF1|=|MA|+2-|MF1|,
          ∴3|MF1|=|MA|+2,
          3e=1+
          1
          |MA|
          ,
          1
          |MA|
          =
          1
          2

          ∴|MA|=2.
          ∵點(diǎn)A在左準(zhǔn)線x=-4上,
          ∴M點(diǎn)的橫坐標(biāo)x0=-4+2=-2.
          把x0=-2代入橢圓
          x2
          4
          +
          y2
          3
          =1
          得y0=0,∴M(-2,0).
          故存在點(diǎn)M,其坐標(biāo)是M(-2,0).
          點(diǎn)評(píng):本題考查橢圓的基礎(chǔ)知識(shí),解題時(shí)注意挖掘隱含條件.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知橢圓
          x24
          +y2=1
          的左、右兩個(gè)頂點(diǎn)分別為A,B,直線x=t(-2<t<2)與橢圓相交于M,N兩點(diǎn),經(jīng)過(guò)三點(diǎn)A,M,N的圓與經(jīng)過(guò)三點(diǎn)B,M,N的圓分別記為圓C1與圓C2
          (1)求證:無(wú)論t如何變化,圓C1與圓C2的圓心距是定值;
          (2)當(dāng)t變化時(shí),求圓C1與圓C2的面積的和S的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓
          x2
          4
          +y2=1
          ,過(guò)E(1,0)作兩條直線AB與CD分別交橢圓于A,B,C,D四點(diǎn),已知kABkCD=-
          1
          4

          (1)若AB的中點(diǎn)為M,CD的中點(diǎn)為N,求證:①kOMkON=-
          1
          4
          為定值,并求出該定值;②直線MN過(guò)定點(diǎn),并求出該定點(diǎn);
          (2)求四邊形ACBD的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知橢圓
          x2
          4
          +y2=1
          ,弦AB所在直線方程為:x+2y-2=0,現(xiàn)隨機(jī)向橢圓內(nèi)丟一粒豆子,則豆子落在圖中陰影范圍內(nèi)的概率為
          π-2
          π-2

          (橢圓的面積公式S=π•a•b,其中a是橢圓長(zhǎng)半軸長(zhǎng),b是橢圓短半軸長(zhǎng))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•朝陽(yáng)區(qū)三模)已知橢圓
          x2
          4
          +y2=1
          的焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓上一點(diǎn),且∠F1PF2=90°,則點(diǎn)P的縱坐標(biāo)可以是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓
          x24
          +y2=1
          ,過(guò)點(diǎn)M(-1,0)作直線l交橢圓于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
          (1)求AB中點(diǎn)P的軌跡方程;
          (2)求△OAB面積的最大值,并求此時(shí)直線l的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案