日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某公司在甲、乙兩地銷售某種品牌車,利潤(單位:萬元)分別為,其中為銷售量(單位:輛)

          1)當(dāng)銷售量在什么范圍時,甲地的銷售利潤不低于乙地的銷售利潤;

          2)若該公司在這兩地共銷售輛車,則甲、乙兩地各銷售多少量時?該公司能獲得利潤最大,最大利潤是多少?

          【答案】1;(2)當(dāng)該公司在甲地銷售輛、乙地銷售輛或在甲地銷售輛、乙地銷售輛品牌車時,該公司所獲利潤最大,且最大利潤為萬元.

          【解析】

          1)解不等式,結(jié)合實(shí)際情況可得出銷售量的取值范圍;

          2)設(shè)該公司在甲地銷售品牌車輛,則在乙地銷售品牌車輛,求出該公司所獲利潤關(guān)于的表達(dá)式,并得出的取值范圍,利用二次函數(shù)的基本性質(zhì)可求出的最大值以及對應(yīng)的的值.

          1)當(dāng)甲地的銷售利潤不低于乙地的銷售利潤時,,即

          ,解得,由于

          所以,當(dāng)銷售量的范圍是時,甲地的銷售利潤不低于乙地的銷售利潤;

          2)設(shè)該公司在甲地銷售品牌車輛,則在乙地銷售品牌車輛,則.

          則該公司能獲得利潤,

          所以,當(dāng)時,取最大值,即.

          因此,當(dāng)該公司在甲地銷售輛、乙地銷售輛或在甲地銷售輛、乙地銷售輛品牌車時,該公司所獲利潤最大,且最大利潤為萬元.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬;將四個面都為直角三角形的三棱錐稱之為鱉臑。若三棱錐P-ABC為鱉臑,PA⊥面ABC,PA=AB=2,AC=4,三棱錐P-ABC的四個頂點(diǎn)都在球的球面上,則球0的表面積為( )

          A. 8πB. 12πC. 20πD. 24π

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)是定義域在R上的奇函數(shù),當(dāng)x0時,fx=x2﹣2x

          1)求出函數(shù)fx)在R上的解析式;

          2)寫出函數(shù)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在三棱臺中,點(diǎn)上,且,點(diǎn)內(nèi)(含邊界)的一個動點(diǎn),且有平面平面,則動點(diǎn)的軌跡是( )

          A. 平面B. 直線C. 線段,但只含1個端點(diǎn)D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。

          ①求所選2人都是男生的概率;

          ②求所選2人恰有1名女生的概率;

          ③求所選2人中至少有1名女生的概率

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=x|xa|+2xaR).

          1)若函數(shù)fx)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

          2)若存在實(shí)數(shù)a[4,4]使得關(guān)于x的方程fx)﹣tfa)=0恰有三個不相等的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是實(shí)數(shù),

          1)若函數(shù)為奇函數(shù),求的值;

          2)試用定義證明:對于任意,上為單調(diào)遞增函數(shù);

          3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】全集U=R,若集合A={x|2≤x9},B={x|1x≤6}

          1)求(CRA∪B;

          2)若集合C={x|ax≤2a+7},且AC,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四面體中,,

          (1)證明:;

          (2)若,四面體的體積為2,求二面角的余弦值

          查看答案和解析>>

          同步練習(xí)冊答案