【題目】已知函數(shù) (
R).
(1) 若,求函數(shù)
的極值;
(2)是否存在實數(shù)使得函數(shù)
在區(qū)間
上有兩個零點,若存在,求出
的取值范圍;若不存在,說明理由。
【答案】(1),
(2)存在實數(shù)
,當
時,函數(shù)
在區(qū)間
上有兩個零點
【解析】試題分析:(1) 2分
,
1 | |||||
- | 0 | + | 0 | - | |
遞減 | 極小值 | 遞增 | 極大值 | 遞減 |
/span>4分
,
6分
(2),
,
8分
① 當時,
在
上為增函數(shù),在
上為減函數(shù),
,
,
,所以
在區(qū)間
,
上各有一個零點,即在
上有兩個零點; 10分
②當時,
在
上為增函數(shù),在
上為減函數(shù),
上為增函數(shù),
,
,
,
,所以
只在區(qū)間
上有一個零點,故在
上只有一個零點; 12分
③ 當時,
在
上為增函數(shù),在
上為減函數(shù),
上為增函數(shù),
,
,
,
, 所以
只在區(qū)間
上有一個零點,故在
上只有一個零點; 13分
故存在實數(shù),當
時,函數(shù)
在區(qū)間
上有兩個零點14分
科目:高中數(shù)學 來源: 題型:
【題目】定義滿足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且∈A(b≠0)”的集合A為“閉集”.試問數(shù)集N,Z,Q,R是否分別為“閉集”?若是,請說明理由;若不是,請舉反例說明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是長方形,側(cè)棱
底面
,且
,過D作
于F,過F作
交 PC于E.
(Ⅰ)證明:平面PBC;
(Ⅱ)求平面與平面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加.現(xiàn)有來自甲協(xié)會的運動員名,其中種子選手
名;乙協(xié)會的運動員
名,其中種子選手
名.從這
名運動員中隨機選擇
人參加比賽.
(1)設(shè)為事件“選出的
人中恰有
名種子選手,且這
名種子選手來自同一個協(xié)會”求事件
發(fā)生的概率;
(2)設(shè)為選出的
人中種子選手的人數(shù),求隨機變量
的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=,AD=CD=1.
(1)求證:BD⊥AA1.
(2)在棱BC上取一點E,使得AE∥平面DCC1D1,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)設(shè)a=2,函數(shù)f(x)的定義域為[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中
是新樣式單車的月產(chǎn)量(單位:件),利潤
總收益
總成本.
(1)試將自行車廠的利潤元表示為月產(chǎn)量
的函數(shù);
(2)當月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術(shù)節(jié)對同一類的,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預(yù)測如下:
甲說:“是或
作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期為
.
(1)求ω的值;
(2)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時f(A)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com