日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 是等差數(shù)列{}的前n項和,且,則的值為      .

           

          【答案】

          44

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (Ⅰ)已知函數(shù)f(x)=
          x
          x+1
          .數(shù)列{an}滿足:an>0,a1=1,且
          an+1
          =f(
          an
          )
          ,記數(shù)列{bn}的前n項和為Sn,且Sn=
          2
          2
          [
          1
          an
          +(
          2
          +1)n]
          .求數(shù)列{bn}的通項公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項?若是,請證明;否則,說明理由.
          (Ⅱ)設(shè){cn}為首項是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項之和仍為數(shù)列{cn}中的項”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•樂山二模)已知數(shù)列{an}有a1=a,a2=p(常數(shù)p>0),對任意的正整數(shù)n,Sn=a1+a2+…+an,并有Sn滿足Sn=
          n(an-a1)
          2

          (I)試判斷數(shù)列{an}是否是等差數(shù)列,若是,求其通項公式,若不是,說明理由;
          (II)令Pn=
          Sn+2
          Sn+1
          +
          Sn+1
          Sn+2
          ,Tn是數(shù)列{Pn}
          的前n項和,求證:Tn-2n<3.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項和Sn=n2-9n(n∈N*)
          (1)這個數(shù)列是等差數(shù)列嗎?若是請證明并求它的通項公式,若不是,請說明理由;
          (2)求使得Sn取最小的序號n的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•閘北區(qū)一模)設(shè){an}和{bn}均為無窮數(shù)列.
          (1)若{an}和{bn}均為等比數(shù)列,試研究:{an+bn}和{anbn}是否是等比數(shù)列?請證明你的結(jié)論;若是等比數(shù)列,請寫出其前n項和公式.
          (2)請類比(1),針對等差數(shù)列提出相應(yīng)的真命題(不必證明),并寫出相應(yīng)的等差數(shù)列的前n項和公式(用首項與公差表示).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}的前n項積為Tn,已知對?n,m∈N+,當n>m時,總有
          Tn
          Tm
          =Tn-mq(n-m)m
          (q>0是常數(shù)).
          (1)求證:數(shù)列{an}是等比數(shù)列;
          (2)設(shè)正整數(shù)k,m,n(k<m<n)成等差數(shù)列,試比較Tn•Tk和(Tm2的大小,并說明理由;
          (3)探究:命題p:“對?n,m∈N+,當n>m時,總有
          Tn
          Tm
          =Tn-mq(n-m)m
          (q>0是常數(shù))”是命題t:“數(shù)列{an}是公比為q(q>0)的等比數(shù)列”的充要條件嗎?若是,請給出證明;若不是,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案