日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題共13分)
          已知正方形ABCD的邊長(zhǎng)為1,.將正方形ABCD沿對(duì)角線折起,使,得到三棱錐ABCD,如圖所示.
          (I)若點(diǎn)M是棱AB的中點(diǎn),求證:OM∥平面ACD;
          (II)求證:;
          (III)求二面角的余弦值.

          (1)略
          (2)略
          (3)
          解:(I)在正方形ABCD中,是對(duì)角線的交點(diǎn),
          OBD的中點(diǎn),                                             ---------------------1分
          MAB的中點(diǎn),
           OMAD.                                                  ---------------------2分
          AD平面ACDOM平面ACD,                             ---------------------3分
          OM∥平面ACD.                                             ---------------------4分
          (II)證明:在中,,,              ---------------------5分
          ,.                         ---------------------6分
           是正方形ABCD的對(duì)角線,
          ,                                               --------------------7分
          .                           --------------------8分
          (III)由(II)知,則OCOA,OD兩兩互相垂直,如圖,以O為原點(diǎn),建立
          空間直角坐標(biāo)系.
          ,               
          是平面的一個(gè)法向量.                     --------------------9分
          ,,                      
          設(shè)平面的法向量,則.
          ,                              --------------------11分
          所以,解得.
          --------------------12分
          從而,二面角的余弦值為..
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (14 分)如圖(1)是一正方體的表面展開圖,MN 和PB 是兩條面對(duì)角線,請(qǐng)?jiān)趫D(2)的正方體中將MN 和PB 畫出來(lái),并就這個(gè)正方體解決下面問(wèn)題。

          (1)求證:MN//平面PBD;
          (2)求證:AQ⊥平面PBD;
          (3)求二面角P—DB—M 的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分13分)
            已知:如圖,長(zhǎng)方體中,、分別是棱,上的點(diǎn),,.
            (1) 求異面直線所成角的余弦值;
           。2) 證明平面;
           。3) 求二面角的正弦值.
                            

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)
          如圖,正方形ADEF和等腰梯形ABCD垂直,已知BC=2AD=4,,
          (I)求證:面ABF;
          (II)求異面直線BE與AC所成的角的余弦值;
          (III)在線段BE上是否存在一點(diǎn)P,使得平面平面BCEF?若存在,求出 的值,若不存在,請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.     
          (Ⅰ)若在邊BC上存在一點(diǎn)Q,使PQ⊥QD,求a的取值范圍;
          (Ⅱ)當(dāng)邊BC上存在唯一點(diǎn)Q,使PQ⊥QD時(shí),求二面角A-PD-Q的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如下圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,若E、F分別是BC、DD1中點(diǎn),則B1到平面ABF的距離為 (  )
          (A)                 (B)                     
          (C)                 (D)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分15分)
          如圖5,在底面為直角梯形的四棱錐中,,

          (1)求證:;
          (2)求直線
          (3)設(shè)點(diǎn)E在棱PC上,,若,求的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)
          已知三棱柱中,三個(gè)側(cè)面均為矩形,底面為等腰直角三角形, ,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上運(yùn)動(dòng).

          (1)求證;
          (II)當(dāng)點(diǎn)運(yùn)動(dòng)到某一位置時(shí),恰好使二面角的平面角的余弦值為,求點(diǎn)到平面的距離;
          (III)在(II)的條件下,試確定線段上是否存在一點(diǎn),使得平面?若存在,確定其位置;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          在直三棱柱ABC-A1B1C1中∠ACB=90°, AA1="2," AC=BC=1,則異面直線A1B與AC所成角的余弦值是           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案