日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x3-3(a-1)x2-6ax,x∈R.,
          (I)求函數(shù)f(x)的單調(diào)區(qū)間;
          (II)當a≥0時,若函數(shù)f(x)在區(qū)間[-1,2]上是單調(diào)函數(shù),求a的取值范圍.
          分析:(1)先求函數(shù)f(x)的導數(shù),根據(jù)導數(shù)大于0函數(shù)單調(diào)遞增,導數(shù)小于0時函數(shù)單調(diào)遞減可得答案.
          (2)先確定函數(shù)f(x)兩個極值點的范圍,再由[-1,2]⊆[x1,x2]可得答案.
          解答:解:(I)f'(x)=3x2-6(a-1)x-6a.
          由f'(x)=0解得x1=-1+a-
          a2+1
          x2=-1+a+
          a2+1
          .

          當x∈(-∞,x1)或x∈(x2,+∞)時,f'(x)>0;
          當x∈(x1,x2)時,f'(x)<0.
          所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1+a-
          a2+1
          )和(-1+a+
          a2+1
          ,+∞)

          調(diào)遞減區(qū)間為(-1+a-
          a2+1
          ,-1+a+
          a2+1
          ).

          (II)由a≥0,知x1=-1+a-
          a2+1
          =-1-(
          a2+1
          -a)<-1
          ,x2=-1+a+
          a2+1
          =a+(
          a2+1
          -1)>0
          ,
          則函數(shù)f(x)在[-1,2]上是單調(diào)函數(shù)
          當且僅當[-1,2]⊆[x1,x2],?(9分)
          x2=a-1+
          a2+1
          ≥2,解得a≥
          4
          3
          .

          故a的取值范圍是[
          4
          3
          ,+∞).
          點評:本題主要考查函數(shù)單調(diào)性與其導函數(shù)的正負之間的關(guān)系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是(  )
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習冊答案