日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知某二次函數(shù)f(x)圖象過原點,且經(jīng)過(-1,-5)和(2,4)兩點,
          (Ⅰ)試求f(x)函數(shù)的解析式;
          (Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進行證明.
          分析:(Ⅰ)求f(x)函數(shù)的解析式,由于函數(shù)性質已知故可用待定系數(shù)法設出其解析式,再代入(-1,-5)和(2,4)兩點,求參數(shù).
          (Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進行證明,故此題解題過程是先判斷再證明,由二次函數(shù)的性質判斷出結果再利用定義法證明即可.
          解答:解:(Ⅰ)因為f(x)過原點,設f(x)=ax2+bx,
          由題意,圖象經(jīng)過(-1,-5)和(2,4)兩點∴
          a-b=-5
          4a+2b=4

          解得:
          a=-1
          b=4
          f(x)=-x2+4x
          (Ⅱ)函數(shù)f(x)在[3,7]上為單調(diào)遞減函數(shù)
          證明:任取x1<x2∈[3,7]f(x1)-f(x2)=(-x12+4x1)-(-x22+4x2)=(x22-x12)+(4x1-4x2)=(x2+x1)(x2-x1)+4(x1-x2)=(x2-x1)(x2+x1-4)x1<x2∈[3,7],x2+x1>6,x2-x1>0∴(x2+x1-4)>0∴f(x1)-f(x2)=(x2-x1)(x2+x1-4)>0∴f(x1)>f(x2),而x1<x2∈[3,7]∴函數(shù)f(x)在[3,7]上為單調(diào)遞減函數(shù)
          點評:本題考查待定系數(shù)法求函數(shù)的解析式及利用定義證明函數(shù)的單調(diào)性,是函數(shù)中對性質考查的基本題型,尤其是第二問要注意解題的格式,先判斷,再證明.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知某二次函數(shù)f(x)圖象過原點,且經(jīng)過(-1,-5)和(2,4)兩點,
          (Ⅰ)試求f(x)函數(shù)的解析式;
          (Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進行證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年山東省青島市平度一中高一(上)自主測評數(shù)學試卷(解析版) 題型:解答題

          已知某二次函數(shù)f(x)圖象過原點,且經(jīng)過(-1,-5)和(2,4)兩點,
          (Ⅰ)試求f(x)函數(shù)的解析式;
          (Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進行證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:單選題

          已知一個二次函數(shù)的對稱軸為x=2,它的圖象經(jīng)過點(2,3),且與某一次函數(shù)的圖象交于點(0,-1),那么已知的二次函數(shù)的解析式是


          1. A.
            f(x)=-x2-4x-1
          2. B.
            f(x)=-x2+4x+1
          3. C.
            f(x)=-x2+4x-1
          4. D.
            f(x)=x2-4x+1

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知某二次函數(shù)f(x)圖象過原點,且經(jīng)過(-1,-5)和(2,4)兩點,
          (Ⅰ)試求f(x)函數(shù)的解析式;
          (Ⅱ)判斷f(x)在區(qū)間[3,7]上的單調(diào)性,并用單調(diào)函數(shù)的定義進行證明.

          查看答案和解析>>

          同步練習冊答案