日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)z∈C,a≥0,解方程z|z|+az+i=0.

          答案:
          解析:

          解:∵∴z是純虛數(shù)且虛部小于0,又z可用|z|表示,

          即z=-|z|i,代入原方程得


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)z∈c,a≥0,解方程z|z|+az+i=0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測理科數(shù)學(xué)試卷(解析版) 題型:解答題

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當(dāng)時,求證:

          (Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

          又因為,………………2分

          ,得證。

          第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

          由此知道a=2,  設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

          又因為,………………3分

          (Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

          設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)z∈c,a≥0,解方程z|z|+az+i=0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第107-110課時):第十四章 復(fù)數(shù)-復(fù)數(shù)的代數(shù)形式及其運算(解析版) 題型:解答題

          設(shè)z∈c,a≥0,解方程z|z|+az+i=0.

          查看答案和解析>>

          同步練習(xí)冊答案