日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)P是橢圓+=1上一點(diǎn),M,N分別是兩圓:(x+2)2+y2=1和(x-2)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為( )
          A.4,8
          B.2,6
          C.6,8
          D.8,12
          【答案】分析:由題設(shè)知橢圓+=1的焦點(diǎn)分別是兩圓(x+2)2+y2=1和(x-2)2+y2=1的圓心,由此能求出|PM|+|PN|的最小值、最大值.
          解答:解:依題意,橢圓+=1的焦點(diǎn)分別是兩圓(x+2)2+y2=1和(x-2)2+y2=1的圓心,
          所以(|PM|+|PN|)max=2×3+2=8,
          (|PM|+|PN|)min=2×3-2=4,
          故選A.
          點(diǎn)評(píng):本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意公式的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•江門一模)已知直線x-
          3
          y+
          3
          =0經(jīng)過橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的一個(gè)頂點(diǎn)B和一個(gè)焦點(diǎn)F.
          (1)求橢圓的離心率;
          (2)設(shè)P是橢圓C上動(dòng)點(diǎn),求||PF|-|PB||的取值范圍,并求||PF|-|PB||取最小值時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•甘肅一模)設(shè)橢圓M:
          x2
          a2
          +
          y2
          2
          =1
          (a>
          2
          )
          的右焦點(diǎn)為F1,直線l:x=
          a2
          a2-2
          與x軸交于點(diǎn)A,若
          OF1
          +2
          AF1
          =0
          (其中O為坐標(biāo)原點(diǎn)).
          (1)求橢圓M的方程;
          (2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個(gè)端點(diǎn)),求
          PE
          PF
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•青島一模)設(shè)橢圓M:
          x2
          a2
          +
          y2
          8
          =1(a>2
          2
          )
          的右焦點(diǎn)為F1,直線l:x=
          a2
          a2-8
          與x軸交于點(diǎn)A,若
          OF1
          +2
          AF1
          =
          0
          (其中O為坐標(biāo)原點(diǎn)).
          (Ⅰ)求橢圓M的方程;
          (Ⅱ)設(shè)P是橢圓M上的任一點(diǎn),EF為圓N:x2+(y-2)2=1的任一條直徑,求
          PE
          PF
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點(diǎn)F2與拋物線y2=8x的焦點(diǎn)重合,過F2作與x軸垂直的直線l與橢圓交于S、T兩點(diǎn),與拋物線交于C、D兩點(diǎn),且
          |CD|
          |ST|
          =2
          6

          (Ⅰ)求橢圓E的方程;
          (Ⅱ)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個(gè)端點(diǎn)),求
          PE
          PF
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•青島一模)已知點(diǎn)M在橢圓D:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn),若圓M與y軸相交于A,B兩點(diǎn),且△ABM是邊長(zhǎng)為
          2
          6
          3
          的正三角形.
          (Ⅰ)求橢圓D的方程;
          (Ⅱ)設(shè)P是橢圓D上的一點(diǎn),過點(diǎn)P的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)Q,若
          QP
          =2
          PF
          ,求直線l的斜率;
          (Ⅲ)過點(diǎn)G(0,-2)作直線GK與橢圓N:
          3x2
          a2
          +
          4y2
          b2
          =1
          左半部分交于H,K兩點(diǎn),又過橢圓N的右焦點(diǎn)F1做平行于HK的直線交橢圓N于R,S兩點(diǎn),試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案