【題目】如圖,在四棱錐中,
底面
,底面
為正方形,
,
分別是
的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求與平面
所成角的正弦值.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ) .
【解析】試題分析:
(Ⅰ)由題意可證得,
,則
平面
,由線面垂直的性質(zhì)有
,由三角形中位線的性質(zhì)可得
,則
(Ⅱ)(方法一)為
軸,以
為
軸,以
為
軸,建立空間直角坐標(biāo)系,計(jì)算可得
平面的一個(gè)法向量
,則
直線
與平面
所成角的正弦值為
.
(方法二)由等體積法可得點(diǎn)到平面
的距離
,據(jù)此可得
與平面
所成角的正弦值為
.
試題解析:
(Ⅰ)因?yàn)?/span>底面
,
平面
,所以
又因?yàn)檎叫?/span>中,
,
所以平面
又因?yàn)?/span>平面
,所以
因?yàn)?/span>分別是
、
的中點(diǎn),所以
所以
(Ⅱ)(方法一)由(Ⅰ)可知, ,
,
兩兩垂直,以
為
軸,以
為
軸,以
為
軸,設(shè)
,
,
,
,
,
,
,
設(shè)平面的一個(gè)法向量
,
,解得
設(shè)直線與平面
所成角為
,則
(方法二)設(shè)點(diǎn)到平面
的距離為
等體積法求出
設(shè)直線與平面
所成角為
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為
,上頂點(diǎn)為
,若直線
的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為
,
的周長(zhǎng)為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線
(直線
的斜率不為1)與橢圓交于
兩點(diǎn),點(diǎn)
在點(diǎn)
的上方,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一網(wǎng)站營(yíng)銷部為統(tǒng)計(jì)某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購(gòu)金額情況,如下表:
若將當(dāng)日網(wǎng)購(gòu)金額不小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)探者”.已知“網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)探者”人數(shù)的比例為2:3.
(1)確定的值,并補(bǔ)全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購(gòu)金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個(gè)不低于2千元,則該網(wǎng)店當(dāng)日被評(píng)為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評(píng)為“皇冠店”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象.若對(duì)滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min=
,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)記兩個(gè)極值點(diǎn)分別為,
(
),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓
的一個(gè)焦點(diǎn),過(guò)原點(diǎn)的直線
與橢圓交于
兩點(diǎn),且
,
的面積為
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若,過(guò)點(diǎn)
且不與坐標(biāo)軸垂直的直線交橢圓于
兩點(diǎn),線段
的垂直平分線與
軸交于點(diǎn)
,求點(diǎn)
橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線:
的左右焦點(diǎn)分別為
、
,
為
右支上的點(diǎn),線段
交
的左支于點(diǎn)
,若
是邊長(zhǎng)等于
的等邊三角形,則雙曲線的標(biāo)準(zhǔn)方程為( )
A. B.
C.
D.
【答案】A
【解析】
即雙曲線的標(biāo)準(zhǔn)方程為
,選A.
【題型】單選題
【結(jié)束】
11
【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=
)( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax3+cx(a>0),其圖象在點(diǎn)(1,f(1))處的切線與直線 x﹣6y+21=0垂直,導(dǎo)函數(shù)
f′(x)的最小值為﹣12.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為
,橢圓的右頂點(diǎn)為A.
(1)求該橢圓的方程:
(2)過(guò)點(diǎn)D( ,﹣
)作直線PQ交橢圓于兩個(gè)不同點(diǎn)P,Q,求證:直線AP,AQ的
斜率之和為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com