日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知命題:“若數(shù)列{an}為等差數(shù)列,且am=a,an=b(m≠n,m,n∈N+),則”.現(xiàn)已知數(shù)列{bn}(bn>0,n∈N+)為等比數(shù)列,且bm=a,bn=b(m≠n,m,n∈N+).
          (1)請(qǐng)給出已知命的證明;
          (2)類比(1)的方法與結(jié)論,推導(dǎo)出bm+n
          【答案】分析:(1)根據(jù)等差數(shù)列的性質(zhì)可分別表示出am+n,聯(lián)立方程求得am和an的值,代入原來的方程組中聯(lián)立求得(m-n)am+n=ma-nb,則am+n的表達(dá)式可得.
          (2)根據(jù)等差數(shù)列的性質(zhì)可分別表示出bn+m,聯(lián)立方程求得bm和bn的值,代入原來的方程組中聯(lián)立求得,則bm+n的表達(dá)式可得.
          解答:解:(1)因?yàn)樵诘炔顢?shù)列{an}中,由等差數(shù)列性質(zhì)得,又am=a,an=b,
          ,得,兩式相減得(m-n)am+n=ma-nb,

          (2)在等比數(shù)列{bn}中,由等比數(shù)列的性質(zhì)得,
          又bm=a,bn=b,∴,得,兩式相除得,

          點(diǎn)評(píng):本題主要考查了等比數(shù)列和等差數(shù)列的性質(zhì).考查了等比數(shù)列和等差數(shù)列通項(xiàng)公式的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知命題:“若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列bn=
          na1a2… an
          (n∈N*)
          也是等比數(shù)列”.類比這一性質(zhì),你能得到關(guān)于等差數(shù)列的一個(gè)什么性質(zhì)?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知命題:若數(shù)列{an}為等差數(shù)列,且am=a,an=b(m≠n,m、n∈N*),則am+n=
          bn-amn-m
          ;現(xiàn)已知等比數(shù)列{bn}(bn>0,n∈N*),bm=a,bn=b(m≠n,m、n∈N*),若類比上述結(jié)論,則可得到bm+n=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知命題:“若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列bn=
          ka1a2an
          (n∈N*)
          也是等比數(shù)列”.可類比得關(guān)于等差數(shù)列的一個(gè)性質(zhì)為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知命題:“若數(shù)列{an}為等差數(shù)列,且am=a,an=b(m≠n,m,n∈N+),則am+n=
          ma-nbm-n
          ”.現(xiàn)已知數(shù)列{bn}(bn>0,n∈N+)為等比數(shù)列,且bm=a,bn=b(m≠n,m,n∈N+).
          (1)請(qǐng)給出已知命的證明;
          (2)類比(1)的方法與結(jié)論,推導(dǎo)出bm+n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知命題:
          ①已知正項(xiàng)等比數(shù)列{an}中,不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立;
          ②若F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),則F(1)=2,F(xiàn)(2)=24;
          ③已知數(shù)列{an}中,an=n2+λn+1(λ∈R).若λ>-3,則恒有an+1>an(n∈N*);
          ④公差小于零的等差數(shù)列{an}的前n項(xiàng)和為Sn.若S20=S40,則S30為數(shù)列{Sn}的最大項(xiàng);以上四個(gè)命題正確的是
          ①③④
          ①③④
          (填入相應(yīng)序號(hào))

          查看答案和解析>>

          同步練習(xí)冊(cè)答案