日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (Ⅰ)若曲線在點處的切線經(jīng)過點(0,1),求實數(shù)的值;

          (Ⅱ)求證:當(dāng)時,函數(shù)至多有一個極值點;

          【答案】(Ⅰ)(Ⅱ)見證明

          【解析】

          (Ⅰ)利用導(dǎo)數(shù)的幾何意義求實數(shù)a的值;(Ⅱ)對a分兩種情況討論,利用導(dǎo)數(shù)證明函數(shù)至多有一個極值點.

          解:(Ⅰ)由,得

          所以.

          所以由.

          (Ⅱ)證明:當(dāng)時,

          當(dāng)時,,函數(shù)上單調(diào)遞增,無極值;

          當(dāng)時,令,則.

          ,

          則①當(dāng),即時,,上單調(diào)遞減,

          所以上至多有一個零點,即在上至多有一個零點.

          所以函數(shù)上至多有一個極值點.

          ②當(dāng),即時,的變化情況如下表:

          x

          +

          0

          -

          極大值

          因為,

          所以上至多有一個零點,即上至多有一個零點.

          所以函數(shù)上至多有一個極值點.

          綜上,當(dāng)時,函數(shù)在定義域上至多有一個極值點

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)求函數(shù)處的切線方程;

          (Ⅱ)若對任意的,恒成立,求的取值范圍;

          (Ⅲ)當(dāng)時,設(shè)函數(shù).證明:對于任意的,函數(shù)有且只有一個零點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中,,,,,分別是,的中點,上且.

          (I)求證:;

          (II)求直線與平面所成角的正弦值;

          (III)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】英語老師要求學(xué)生從星期一到星期四每天學(xué)習(xí)3個英語單詞:每周五對一周內(nèi)所學(xué)單詞隨機抽取若干個進(jìn)行檢測(一周所學(xué)的單詞每個被抽到的可能性相同)

          (1)英語老師隨機抽了個單詞進(jìn)行檢測,求至少有個是后兩天學(xué)習(xí)過的單詞的概率;

          (2)某學(xué)生對后兩天所學(xué)過的單詞每個能默寫對的概率為,對前兩天所學(xué)過的單詞每個能默寫對的概率為,若老師從后三天所學(xué)單詞中各抽取一個進(jìn)行檢測,求該學(xué)生能默寫對的單詞的個數(shù)的分布列和期望。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線ACBD的交點,AB=2,∠BAD=60°MPD的中點.

          (Ⅰ)求證:OM∥平面PAB;

          (Ⅱ)平面PBD⊥平面PAC;

          (Ⅲ)當(dāng)三棱錐CPBD的體積等于 時,求PA的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于頂點在原點的拋物線,給出下列條件:

          ①焦點在y軸上;

          ②焦點在x軸上

          ③拋物線上橫坐標(biāo)為1的點到焦點的距離等于6

          ④拋物線的過焦點且垂直于對稱軸的弦的長為5;

          ⑤由原點向過焦點的某條直線作垂線,垂足坐標(biāo)為(2,1

          能使拋物線方程為y210x的條件是_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

          )求數(shù)列的通項公式;

          )令.求數(shù)列的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】美國制裁中興,未來7年一顆芯片都不賣,這卻激發(fā)了中國“芯”的研究熱潮.某公司甲,乙,丙三個研發(fā)小組分別研發(fā),,三種不同的芯片,現(xiàn)在用分層抽樣的方法從這些芯片中抽取若干件進(jìn)行質(zhì)量分析,有關(guān)數(shù)據(jù)見下表(單位:件).

          芯片

          數(shù)量

          抽取件數(shù)

          200

          600

          400

          2

          (Ⅰ)求的值;

          (Ⅱ)若在這抽出的樣品中隨機抽取2件送往某機構(gòu)進(jìn)行進(jìn)一步檢測,求這2件芯片來自不同種類的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓中心為坐標(biāo)原點O,對稱軸為坐標(biāo)軸,且過M2, ,N(,1)兩點,

          I)求橢圓的方程;

          II)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點A,B,?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。

          查看答案和解析>>

          同步練習(xí)冊答案