日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知平行四邊形和矩形所在平面垂直,其中為棱的中點(diǎn),的中點(diǎn).

          1)求證:;

          2)若點(diǎn)到平面的距離是,求多面體的體積.

          【答案】1)詳見(jiàn)解析;(2.

          【解析】

          1)首先連接,根據(jù)面面垂直的性質(zhì)得到平面,根據(jù)線面垂直的性質(zhì)得到.根據(jù)可得到,再根據(jù)線面垂直的判定即可證明平面,即證.

          2)首先取中點(diǎn),連接,根據(jù)平面得到點(diǎn)到平面的距離就是,取中點(diǎn),連接,利用面面垂直的性質(zhì)即可證明為三棱柱的高,再求其體積即可.

          1)連接,因?yàn)?/span>為正三角形,為棱的中點(diǎn),

          所以,因?yàn)?/span>,從而

          又平面平面,平面

          所以平面.

          平面,

          所以.

          設(shè),所以,

          ,所以,

          所以.

          ,所以.

          ,②

          由①②及,可得平面.

          所以.

          2)取中點(diǎn),連接,則,

          平面

          因?yàn)?/span>平面,

          故點(diǎn)到平面的距離就是點(diǎn)到平面的距離.

          ,因,得,則

          中點(diǎn),連接,因?yàn)?/span>為正三角形,所以.

          因?yàn)槠矫?/span>平面,

          平面,.

          所以平面

          所以為三棱柱的高,

          由已知可得,,

          所以三棱柱的體積.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為發(fā)揮體育咋核心素養(yǎng)時(shí)代的獨(dú)特育人價(jià)值,越來(lái)越多的中學(xué)生已將某些體育項(xiàng)目納入到學(xué)生的必修課程,某中學(xué)計(jì)劃在高一年級(jí)開(kāi)設(shè)游泳課程,為了解學(xué)生對(duì)游泳的興趣,某數(shù)學(xué)研究學(xué)習(xí)小組隨機(jī)從該校高一年級(jí)學(xué)生抽取了100人進(jìn)行調(diào)查.

          級(jí)

          一(1

          一(2

          一(3

          一(4

          一(5

          一(6

          一(7

          一(8

          一(9

          一(10

          市級(jí)比賽

          獲獎(jiǎng)人數(shù)

          2

          2

          3

          3

          4

          4

          3

          3

          4

          2

          市級(jí)以上比

          賽獲獎(jiǎng)人數(shù)

          2

          2

          1

          0

          2

          3

          3

          2

          1

          2

          1)已知在被抽取的女生中有6名高一(1)班學(xué)生,其中3名對(duì)游泳有興趣,現(xiàn)在從這6名學(xué)生中最忌抽取3人,求至少有2人對(duì)游泳有興趣的概率;

          2)該研究性學(xué)習(xí)小組在調(diào)查發(fā)現(xiàn),對(duì)游泳有興趣的學(xué)生中有部分曾在市級(jí)以上游泳比賽中獲獎(jiǎng),如上表所示,若從高一(8)班和高一(9)班獲獎(jiǎng)學(xué)生中隨機(jī)各抽取2人進(jìn)行跟蹤調(diào)查.記選中的4人中市級(jí)以上游泳比賽獲獎(jiǎng)的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某市建有貫穿東西和南北的兩條垂直公路,在它們交叉路口點(diǎn)處的東北方向建有一個(gè)荷花池,荷花池的外圍是一條環(huán)形公路,荷花池中的固定觀景臺(tái)位于兩條垂直公路的角平分線上,與環(huán)形公路的交點(diǎn)記作.游客游覽荷花池時(shí),需沿公路先到達(dá)環(huán)形公路.為了分流游客,方便游客游覽荷花池,計(jì)劃從靠近公路,的環(huán)形公路上選兩處(,關(guān)于直線對(duì)稱)修建直達(dá)觀景臺(tái)的玻璃棧道.以,所在的直線為,軸建立平面直角坐標(biāo)系,靠近公路,的環(huán)形公路可用曲線近似表示,曲線符合函數(shù)

          1)若百米,點(diǎn)的垂直距離為1百米,求玻璃棧道的總長(zhǎng)度;

          2)若要使得玻璃棧道的總長(zhǎng)度最小為百米,求觀景臺(tái)的位置.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線,其焦點(diǎn)為,直線過(guò)點(diǎn)交于、兩點(diǎn),當(dāng)的斜率為時(shí),.

          1)求的值;

          2)在軸上是否存在一點(diǎn)滿足(點(diǎn)為坐標(biāo)原點(diǎn))?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】血藥濃度(Serum Drug Concentration)是指藥物吸收后在血漿內(nèi)的總濃度(單位:mg/ml),通常用血藥濃度來(lái)研究藥物的作用強(qiáng)度.下圖為服用同等劑量的三種新藥后血藥濃度的變化情況,其中點(diǎn)的橫坐標(biāo)表示服用第種藥后血藥濃度達(dá)到峰值時(shí)所用的時(shí)間,其它點(diǎn)的橫坐標(biāo)分別表示服用三種新藥后血藥濃度第二次達(dá)到峰值一半時(shí)所用的時(shí)間(單位:h),點(diǎn)的縱坐標(biāo)表示第種藥的血藥濃度的峰值.(

          ①記為服用第種藥后達(dá)到血藥濃度峰值時(shí),血藥濃度提高的平均速度,則中最大的是_______;

          ②記為服用第種藥后血藥濃度從峰值降到峰值的一半所用的時(shí)間,則中最大的是_______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切,橢圓的對(duì)稱軸為坐標(biāo)軸,點(diǎn)為坐標(biāo)原點(diǎn),是其一個(gè)焦點(diǎn),又點(diǎn)在橢圓上.

          (1)求動(dòng)圓圓心的軌跡的標(biāo)準(zhǔn)方程和橢圓的標(biāo)準(zhǔn)方程;

          (2)若過(guò)的動(dòng)直線交橢圓點(diǎn),交軌跡兩點(diǎn),設(shè)的面積,的面積,令的面積,令,試求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,(其中常數(shù)).

          (1)當(dāng)時(shí),求函數(shù)的極值;

          (2)若函數(shù)有兩個(gè)零點(diǎn),求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.

          1)求出動(dòng)點(diǎn)的軌跡的標(biāo)準(zhǔn)方程;

          2)設(shè)動(dòng)直線與曲線有且僅有一個(gè)公共點(diǎn),與圓相交于兩點(diǎn)(兩點(diǎn)均不在坐標(biāo)軸上),求直線的斜率之積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx=2sinxxcosxxf′x)為fx)的導(dǎo)數(shù).

          1)證明:f′x)在區(qū)間(0,π)存在唯一零點(diǎn);

          2)若x[0π]時(shí),fxax,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案