【題目】設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x2)≥( ﹣1)x2 .
【答案】解:(Ⅰ)函數(shù)f(x)的定義域為(﹣1,+∞), f′(x)=2x+ =
,
令g(x)=2x2+2x+a,則△=4﹣8a,
①當(dāng)a≥ 時,△≤0,g(x)≥0,從而f′(x)≥0,
故函數(shù)f(x)在(﹣1,+∞)上單調(diào)遞增;
②當(dāng)a< 時,△>0,g(x)=0的兩個根為
x1= ,x2=
,
當(dāng)a≤0時,x1≤﹣1<x2 , 此時,當(dāng)x∈(﹣1, ),函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈( ,+∞),函數(shù)f(x)單調(diào)遞增.
當(dāng)0<a< 時,﹣1<x1<x2 , 此時函數(shù)f(x)在區(qū)間(﹣1,
),(
,+∞)單調(diào)遞增;
當(dāng)x∈( ,
)函數(shù)f(x)單調(diào)遞減.
綜上:當(dāng)a≥ 時,函數(shù)f(x)在(﹣1,+∞)上單調(diào)遞增;
當(dāng)0<a< 時,函數(shù)f(x)在區(qū)間(﹣1,
),(
,+∞)單調(diào)遞增;
在區(qū)間( ,
),函數(shù)f(x)單調(diào)遞減;
當(dāng)a≤0時,x∈(﹣1, )函數(shù)f(x)單調(diào)遞減,
x∈( ,+∞)函數(shù)f(x)單調(diào)遞增…(6分)
(Ⅱ)證明:當(dāng)函數(shù)f(x)有兩個極值點時,0<a< ,x2=
∈(﹣
,0),
且g(x2)=2 ﹣2x2 ,
f(x2)= +(﹣2
﹣2x2)ln(x2+1),x2∈(﹣
,0),
=x2﹣2(x2+1)ln(x2+1),x2∈(﹣
,0),
令h(x)=x﹣2(x+1)ln(x+1),x∈(﹣ ,0),
h′(x)=﹣2ln(x+1)﹣1,令h′(x)>0,x∈(﹣ ,
﹣1),函數(shù)單調(diào)遞增;
令h′(x)<0,x∈( ﹣1,0),函數(shù)單調(diào)遞減;
∴h(x)max=h( ﹣1)=
﹣1,∴
≤
﹣1,
∵x2∈(﹣ ,0),
∴f(x2)≥( ﹣1)x2 .
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)得到a=﹣2 ﹣2x2 , 根據(jù)f(x2)=
+(﹣2
﹣2x2)ln(x2+1),x2∈(﹣
,0),得到
=x2﹣2(x2+1)ln(x2+1),x2∈(﹣
,0),令h(x)=x﹣2(x+1)ln(x+1),x∈(﹣
,0),根據(jù)函數(shù)的單調(diào)性求出h(x)的最大值,從而證明結(jié)論.
【考點精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞減;求函數(shù)
的極值的方法是:(1)如果在
附近的左側(cè)
,右側(cè)
,那么
是極大值(2)如果在
附近的左側(cè)
,右側(cè)
,那么
是極小值才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a,
b)與
=(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=,若對任意給定的m∈(1,+∞),都存在唯一的x0∈R滿足f(f(x0))=2a2m2+am,則正實數(shù)a的取值范圍為( 。
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在[-1,1]上的奇函數(shù),且
,若任意的
,當(dāng)
時,總有
.
(1)判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若對所有的
恒成立,其中
(
是常數(shù)),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如甲圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,將△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙圖所示的四棱錐D1﹣ABCE.
(Ⅰ)求證:BE⊥平面D1AE;
(Ⅱ)求二面角A﹣D1E﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對一切實數(shù)x、y,不等式 ﹣cos2x≥asinx﹣
恒成立,則實數(shù)a的取值范圍是( )
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2
]
D.[﹣3,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列{an}的各項都是正數(shù),其前n項和為Sn , 且滿足:a1=a,rSn=anan+1﹣1,其中a≠1,常數(shù)r∈N;
(1)求證:an+2﹣an是一個定值;
(2)若數(shù)列{an}是一個周期數(shù)列(存在正整數(shù)T,使得對任意n∈N* , 都有an+T=an成立,則稱{an}為周期數(shù)列,T為它的一個周期,求該數(shù)列的最小周期;
(3)若數(shù)列{an}是各項均為有理數(shù)的等差數(shù)列,cn=23n﹣1(n∈N*),問:數(shù)列{cn}中的所有項是否都是數(shù)列{an}中的項?若是,請說明理由,若不是,請舉出反例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: +
=1(a>b>0)的焦點為F1 , F2 , 離心率為
,點P為其上動點,且三角形PF1F2的面積最大值為
,O為坐標(biāo)原點.
(1)求橢圓C的方程;
(2)若點M,N為C上的兩個動點,求常數(shù)m,使 =m時,點O到直線MN的距離為定值,求這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com