日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長(zhǎng)為
          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)n是過(guò)原點(diǎn)的直線,l是與n垂直相交于P點(diǎn)、與橢圓相交于A,B兩點(diǎn)的直線,,是否存在上述直線l使成立?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
          【答案】分析:(Ⅰ)設(shè)橢圓的半焦距為c,由題意知,由此能求出橢圓的標(biāo)準(zhǔn)方程.
          (Ⅱ)設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),假設(shè)使成立的直線l存在,當(dāng)l不垂直于x軸時(shí),設(shè)l的方程為y=kx+m,由l與n垂直相交于P點(diǎn)且,由,,知x1x2+y1y2=0.將y=kx+m代入橢圓方程,得(1+2k2)x2+4kmx+(2m2-8)=0,由韋達(dá)定理能夠?qū)С鰇2=-1,即此時(shí)直線l不存在;當(dāng)l垂直于x軸時(shí),滿足的直線l的方程為x=1或x=-1,由此能夠?qū)С龃藭r(shí)直線l不存在.所以使成立的直線l不存在.
          解答:解:(Ⅰ)設(shè)橢圓的半焦距為c,
          由題意知
          所以,又a2=b2+c2,因此b=2
          故橢圓的標(biāo)準(zhǔn)方程為(6分)
          (Ⅱ)設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),
          假設(shè)使成立的直線l存在,
          (ⅰ)當(dāng)l不垂直于x軸時(shí),設(shè)l的方程為y=kx+m,
          由l與n垂直相交于P點(diǎn)且,即m2=k2+1
          ,,

          ==1+0+0-1=0,
          即x1x2+y1y2=0
          將y=kx+m代入橢圓方程,得(1+2k2)x2+4kmx+(2m2-8)=0
          由求根公式可得,
          0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2=(1+k2)x1x2+km(x1+x2)+m2
          因此(1+k2)(2m2-8)-4k2m2+m2(1+2k2)=0
          將m2=k2+1代入上式并化簡(jiǎn)得k2=-1,
          即此時(shí)直線l不存在;(10分)
          (ⅱ)當(dāng)l垂直于x軸時(shí),滿足的直線l的方程為x=1或x=-1,
          當(dāng)x=1時(shí),A,B,P的坐標(biāo)分別為,
          ,∴
          當(dāng)x=-1時(shí),同理可得,矛盾,即此時(shí)直線l不存在
          綜上可知,使成立的直線l不存在.(14分)
          點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意計(jì)算能力的培養(yǎng),提高解題能力和解題技巧.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a、m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率是(    )

          A.                    B.               C.                 D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省、陽(yáng)東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

          (本題滿分14分)

          如圖,已知橢圓=1(ab>0),F1F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上的頂點(diǎn),直線AF2交橢圓于另 一點(diǎn)B.

          (1)若∠F1AB=90°,求橢圓的離心率;

          (2)若=2,·,求橢圓的方程.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題

          已知橢圓(a>b>0),點(diǎn)在橢圓上。

          (I)求橢圓的離心率。

          (II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

          【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識(shí). 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:解答題

          已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.

             (1)求橢圓C的標(biāo)準(zhǔn)方程;

             (2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年河北省邯鄲市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

          (本小題滿分分)

          (普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點(diǎn).

          (1)求橢圓的方程;

          (2)若直線與橢圓交于兩點(diǎn),,求k的值.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案