日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=
          12
          x2+2ax,g(x)=3a2lnx+b,其中a>0.設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同.
          (1)若a=1,求b的值;
          (2)用a表示b,并求b的最大值.
          分析:(1)設(shè)y=f(x)與y=g(x)(x>0)在公共點(diǎn)(x0,y0)處的切線相同,先利用導(dǎo)數(shù)求出在切點(diǎn)處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.最后利用兩直線重合列出等式即可求得b值;
          (2)利用(1)類似的方法,利用a的表達(dá)式來表示b,然后利用導(dǎo)數(shù)來研究b的最大值,研究此函數(shù)的最值問題,先求出函數(shù)的極值,結(jié)合函數(shù)的單調(diào)性,最后確定出最大值與最小值即得.
          解答:解:(1)設(shè)y=f(x)與y=g(x)(x>0)在公共點(diǎn)(x0,y0)處的切線相同.
          f′(x)=x+2,g′(x)=
          3
          x

          由題意知f(x0)=g(x0),f′(x0)=g′(x0),
          1
          2
          x-02+2x0=3lnx0+b
          x0+2=
          3
          x0

          由x0+2=
          3
          x0
          得x0=1或x0=-3(舍去),即有b=
          5
          2

          (2)設(shè)y=f(x)與y=g(x)(x>0)在公共點(diǎn)(x0,y0)處的切線相同、
          f′(x)=x+2a,g′(x)=
          3a2
          x

          由題意f(x0)=g(x0),f′(x0)=g′(x0),
          1
          2
          x
          2
          0
          +2ax0=3a2lnx0+b
          x0+2a=
          3a2
          x0
          由x0+2a=
          3a2
          x0
          得x0=a或x0=-3a(舍去),
          即有b=
          1
          2
          a2+2a2-3a2lna=
          5
          2
          a2-3a2lna.
          令h(t)=
          5
          2
          t2-3t2lnt(t>0),則h′(t)=2t(1-3lnt)、
          于是當(dāng)t(1-3lnt)>0,即0<t<e
          1
          3
          時(shí),h′(t)>0;
          當(dāng)t(1-3lnt)<0,即t>e
          1
          3
          時(shí),h′(t)<0.
          故h(t)在(0,e
          1
          3
          )為增函數(shù),在(e
          1
          3
          ,+∞)為減函數(shù),于是h(t)在(0,+∞)的最大值為h(e
          1
          3
          )=
          3
          2
          e
          2
          3
          ,
          故b的最大值為
          3
          2
          e
          2
          3
          點(diǎn)評(píng):本小題主要考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=x2+4ax+1,g(x)=6a2lnx+2b+1,其中a>0.
          (Ⅰ)設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同,用a表示b,并求b的最大值;
          (Ⅱ)設(shè)h(x)=f(x)+g(x),證明:若a≥
          3
          -1
          ,則對(duì)任意x1,x2∈(0,+∞),x1≠x2
          h(x2)-h(x1)
          x2-x1
          >8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=
          12
          x2+2ax
          ,g(x)=3a2lnx+b,其中a>0,設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同.
          (Ⅰ)用a表示b,并求b的最大值;
          (Ⅱ)求證:f(x)≥g(x)(x>0).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在正實(shí)數(shù)集上的函數(shù)f(x)滿足①若x>1,則f(x)<0;②f(
          12
          )
          =1;③對(duì)定義域內(nèi)的任意實(shí)數(shù)x,y,都有:f(xy)=f(x)+f(y),則不等式f(x)+f(5-x)≥-2的解集為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在正實(shí)數(shù)集上的連續(xù)函數(shù)f(x)=
          1
          1-x
          +
          2
          x2-1
          (0<x<1)
          x+a   (x≥1)
          ,則實(shí)數(shù)a的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•河西區(qū)二模)已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=
          3x22
          +ax,g(x)=4a2lnx+b,其中a>0,設(shè)兩曲線x=f(x)與f=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同.
          (I)若a=1,求兩曲線y=f(x)與y=g(x)在公共點(diǎn)處的切線方程;
          (Ⅱ)用a表示b,并求b的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案