日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 拋物線x2=ay(a>0)的準線l與y軸交于點P,若l繞點P以每秒
          π
          12
          弧度的角速度按逆時針方向旋轉(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于( 。
          分析:根據(jù)拋物線的方程,找出p的值,進而得到其準線方程和P的坐標,根據(jù)直線l過P點,設出直線l的斜率為k時與拋物線相切,表示出此時直線l的方程,與拋物線聯(lián)立,消去y得到關于x的一元二次方程,令根的判別式等于0列出關于k的方程,求出方程的解即可得到k的值,從而確定出直線l的傾斜角,用求出的傾斜角除以角速度即可求出此時所用的時間t.
          解答:解:根據(jù)拋物線的方程x2=ay,得到p=
          a
          4
          ,
          所以此拋物線的準線方程為y=-
          a
          4
          ,P坐標為(0,-
          a
          4
          ),
          令恒過P點的直線y=kx-
          a
          4
          與拋物線相切,
          聯(lián)立直線與拋物線得
          y=
          x2
          a
          y=kx-
          a
          4

          消去y得:
          x2
          a
          -kx+
          a
          4
          =0,得到△=k2-1=0,即k2=1,
          解得:k=1或k=-1,
          由直線l繞點P逆時針旋轉(zhuǎn),k=-1不合題意,舍去,
          則k=1,此時直線的傾斜角為
          π
          4
          ,又P的角速度為每秒
          π
          12
          弧度,
          所以直線l恰與拋物線第一次相切,則t=
          π
          4
          π
          12
          =3.
          故選C.
          點評:本題以拋物線為載體,考查拋物線的簡單性質(zhì),恒過定點的直線方程.當直線與曲線相切時,設出直線的方程,聯(lián)立直線與曲線方程,消去一個字母后得到關于另一個字母的一元二次方程,利用根的判別式等于0,是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          拋物線x2=ay(a≠0)的準線方程是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知F為拋物線x2=ay(a>0)的焦點,O為坐標原點.點M為拋物線上的任一點,過點M作拋物線的切線交x軸于點N,設k1,k2分別為直線MO與直線NF的斜率,則k1k2=
          -
          1
          2
          -
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知拋物線x2=ay(a>0)的焦點恰好為雙曲線y2-x2=2的一個焦點,則a的值為( 。
          A、1B、4C、8D、16

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設斜率為2的直線l過拋物線x2=ay(a≠0)的焦點F,且和x軸交于點P,若△OPF(O為坐標原點)的面積為1,則實數(shù)a的值為( 。

          查看答案和解析>>

          同步練習冊答案