日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點(diǎn)A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn).
          (Ⅰ)求E的方程;
          (Ⅱ)設(shè)過(guò)點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的方程.

          【答案】解:(Ⅰ) 設(shè)F(c,0),由條件知 ,得 ,
          所以a=2,b2=a2﹣c2=1,故E的方程
          (Ⅱ)依題意當(dāng)l⊥x軸不合題意,故設(shè)直線l:y=kx﹣2,設(shè)P(x1 , y1),Q(x2 , y2
          將y=kx﹣2代入 ,得(1+4k2)x2﹣16kx+12=0,
          當(dāng)△=16(4k2﹣3)>0,即 時(shí),
          從而
          又點(diǎn)O到直線PQ的距離 ,所以△OPQ的面積 = ,
          設(shè) ,則t>0,
          當(dāng)且僅當(dāng)t=2,k=± 等號(hào)成立,且滿足△>0,
          所以當(dāng)△OPQ的面積最大時(shí),l的方程為:y= x﹣2或y=﹣ x﹣2
          【解析】(Ⅰ)通過(guò)離心率得到a、c關(guān)系,通過(guò)A求出a,即可求E的方程;(Ⅱ)設(shè)直線l:y=kx﹣2,設(shè)P(x1 , y1),Q(x2 , y2)將y=kx﹣2代入 ,利用△>0,求出k的范圍,利用弦長(zhǎng)公式求出|PQ|,然后求出△OPQ的面積表達(dá)式,利用換元法以及基本不等式求出最值,然后求解直線方程.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知四棱錐,底面為菱形, 平面, 分別是的中點(diǎn).

          (Ⅰ)證明:

          (Ⅱ)若上的動(dòng)點(diǎn), 與平面所成最大角的正切值為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】由于被墨水污染,一道數(shù)學(xué)題僅能見(jiàn)到如下文字:已知二次函數(shù)的圖像經(jīng)過(guò),,求證:這個(gè)二次函數(shù)的圖像關(guān)于直線對(duì)稱,根據(jù)已知消息,題中二次函數(shù)圖像不具有的性質(zhì)是( ).

          A. 軸上的截線段長(zhǎng)是 B. 軸交于點(diǎn)

          C. 頂點(diǎn) D. 過(guò)點(diǎn)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于函數(shù),若,則稱不動(dòng)點(diǎn);若,則稱穩(wěn)定點(diǎn).函數(shù)不動(dòng)點(diǎn)穩(wěn)定點(diǎn)的集合分別記為,即,

          )設(shè)函數(shù),求集合

          )求證:

          )設(shè)函數(shù),且,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有一個(gè)公益廣告說(shuō):若不注意節(jié)約用水,那么若干年后,最有一滴水只能是我們的眼淚。我國(guó)是水資源匱乏的國(guó)家。為鼓勵(lì)節(jié)約用水,某市打算出臺(tái)一項(xiàng)水費(fèi)政策措施,規(guī)定:每一季度每人用水量不超過(guò)5噸時(shí),每噸水費(fèi)收基本價(jià)1.3元;若超過(guò)5噸而不超過(guò)6噸時(shí),超過(guò)部分的水費(fèi)加收200%;若超過(guò)6噸而不超過(guò)7噸時(shí),超過(guò)部分的水費(fèi)加收400%。設(shè)某人本季度實(shí)際用水量為噸,應(yīng)交水費(fèi)為f(x),(1)求的值;(2)試求出函數(shù)f(x)的解析式。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,直線.

          (1)若拋物線和直線沒(méi)有公共點(diǎn),求的取值范圍;

          (2)若,且拋物線和直線只有一個(gè)公共點(diǎn)時(shí),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為上一點(diǎn).

          (1)求橢圓的方程;

          (2)設(shè)分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),平行于的直線于異于的兩點(diǎn).點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.證明:直線軸圍成的三角形是等腰三角形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)數(shù)列的前項(xiàng)和為, ().

          (1)求數(shù)列的通項(xiàng)公式;

          (2)設(shè),求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在直三棱柱中,,,,

          (1)證明: 平面

          (2)若是棱的中點(diǎn),在棱上是否存在一點(diǎn),使DE∥平面?證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案