日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在一容器內(nèi)裝有濃度為r%的溶液a升,注入濃度為p%的溶液
          1
          4
          a
          升,攪勻后再倒出溶液
          1
          4
          a
          升,這叫做一次操作.
          (1)設(shè)第n次操作后容器內(nèi)溶液的濃度為bn(每次注入的溶液都是p%),計(jì)算b1,b2,b3,并歸納出bn的計(jì)算公式(不要求證明)
          (2)設(shè)p>q>r,且p-r=2(p-q)要使容器內(nèi)溶液濃度不小于q%,問至少要進(jìn)行上述操作多少次?(已知lg2=0.3010)
          分析:(1)由b1=
          r
          100
          +
          a
          4
          p
          100
          a+
          a
          4
          =
          1
          100
          (
          4
          5
          r+
          1
          5
          p)
          ,b2=
          a•b1+
          a
          4
          p
          100
          a+
          a
          4
          =
          1
          100
          [(
          4
          5
          )2r+
          1
          5
          p+
          4
          52
          p]
          ,b3=
          a•b2+
          a
          4
          p
          100
          a+
          a
          4
          =
          1
          100
          [(
          4
          5
          )3r+
          1
          5
          p+
          4
          52
          p+
          42
          53
          p]
          ,能求出bn的計(jì)算公式.
          (2)bn=
          r
          100
          (
          4
          5
           n+
          p
          500
          [1+
          4
          5
          +(
          4
          5
          )
          2
          +…+(
          4
          5
          )
          n-1
          ]
          =
          r
          100
          (
          4
          5
          )n+
          p
          500
          1-(
          4
          5
          )
          n
          1-
          4
          5
          =
          p
          100
          -
          1
          100
          (
          4
          5
          )n(p-r)
          ,依題意有:
          p
          100
          -
          1
          100
          (
          4
          5
          )
          n
          (p-r)≥
          q
          100
          ,由此能求出至少要注入倒出4次.
          解答:解:(1)b1=
          r
          100
          +
          a
          4
          p
          100
          a+
          a
          4
          =
          1
          100
          (
          4
          5
          r+
          1
          5
          p)
          ,
          b2=
          a•b1+
          a
          4
          p
          100
          a+
          a
          4
          =
          1
          100
          [(
          4
          5
          )2r+
          1
          5
          p+
          4
          52
          p]
          ,
          b3=
          a•b2+
          a
          4
          p
          100
          a+
          a
          4
          =
          1
          100
          [(
          4
          5
          )3r+
          1
          5
          p+
          4
          52
          p+
          42
          53
          p]
          ,
          bn=
          1
          100
          [(
          4
          5
          )nr+
          1
          5
          p+
          4
          52
          p+…+
          4n-1
          5n
          p]

          (2)bn=
          r
          100
          (
          4
          5
           n+
          p
          500
          [1+
          4
          5
          +(
          4
          5
          )
          2
          +…+(
          4
          5
          )
          n-1
          ]

          =
          r
          100
          (
          4
          5
          )n+
          p
          500
          1-(
          4
          5
          )
          n
          1-
          4
          5
          =
          p
          100
          -
          1
          100
          (
          4
          5
          )n(p-r)
          ,
          依題意有:
          p
          100
          -
          1
          100
          (
          4
          5
          )
          n
          (p-r)≥
          q
          100

          ∵p-r=2(p-q),
          ∴上式化簡(jiǎn)得:(
          5
          4
          )n≥2
          ,
          n≥
          lg2
          1-3lg2
          =
          0.3010
          1-3×0.3010
          ≈3.103,
          ∴至少要注入倒出4次.
          點(diǎn)評(píng):本題考查數(shù)列在生產(chǎn)實(shí)際中的具體應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

          在一容器內(nèi)裝有濃度為r%的溶液a升,注入濃度為p%的溶液升,攪勻后再倒出升,這叫做第一次操作.設(shè)n次操作后容器內(nèi)溶液的濃度為(每次注入的溶液的濃度p%).計(jì)算,,并歸納出

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在一容器內(nèi)裝有濃度為r%的溶液a升,注入濃度為p%的溶液a升,攪勻后再倒出溶液a升,這叫一次操作,設(shè)第n次操作后容器內(nèi)溶液的濃度為bn(每次注入的溶液濃度都是p%),計(jì)算b1,b2,b3,并歸納出bn的計(jì)算公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在一容器內(nèi)裝有濃度為r%的溶液a升,注入濃度為p%的溶液a升,攪勻后再倒出溶液a升,這叫一次操作,設(shè)第n次操作后容器內(nèi)溶液的濃度為bn,計(jì)算b1、b2b3,并歸納出計(jì)算公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年廣東省廣州一中高三數(shù)學(xué)二輪復(fù)習(xí):不等式(解析版) 題型:解答題

          在一容器內(nèi)裝有濃度為r%的溶液a升,注入濃度為p%的溶液升,攪勻后再倒出溶液升,這叫做一次操作.
          (1)設(shè)第n次操作后容器內(nèi)溶液的濃度為bn(每次注入的溶液都是p%),計(jì)算b1,b2,b3,并歸納出bn的計(jì)算公式(不要求證明)
          (2)設(shè)p>q>r,且p-r=2(p-q)要使容器內(nèi)溶液濃度不小于q%,問至少要進(jìn)行上述操作多少次?(已知lg2=0.3010)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案