日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在Rt△ABC中,∠C是直角,AC=3,BC=4,CD⊥AB于點(diǎn)D,∠A的平分線交CD于點(diǎn)M,交BC于點(diǎn)E,求:
          (1)CD的長;
          (2)AE的長.
          分析:(1)CD的長,可先求出AB的長,再用等面積法求得CD的長即可;
          (2)AE的長,可根據(jù)角平分線的性質(zhì)求得CE的長,再有勾股定理求得AE的長即可.
          解答:解:(1)∵∠C是直角AC=3,BC=4,∴AB=5
          由AB×CD=AC×BC得,CD=
          AC×BC
          AB
          =
          3×4
          5
          =
          12
          5

          (2)由AE是∠A的平分線交CD于點(diǎn)M,交BC于點(diǎn)E,
          CE
          BE
          =
          AC
          AB
          =
          3
          5

          故CE=
          3
          8
          BC=
          3
          2

          在Rt△ACM中,由勾股定理,得AE=
          3
          5
          2
          點(diǎn)評:本題考查三角形中的幾何計(jì)算,考查了用等面積法求長度以及角平分線的性質(zhì),屬于基本題型.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點(diǎn),∠DAC=30°,BD=2,AB=2
          3
          ,則AC的長為( 。
          A、2
          2
          B、3
          C、
          3
          D、
          3
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
          (1)求證:點(diǎn)E是邊BC的中點(diǎn);
          (2)若EC=3,BD=2
          6
          ,求⊙O的直徑AC的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點(diǎn)P.
          (1)若AE=CD,點(diǎn)M為BC的中點(diǎn),求證:直線MP∥平面EAB
          (2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
          2
          2
          .DO⊥AB于O點(diǎn),OA=OB,DO=2,曲線E過C點(diǎn),動點(diǎn)P在E上運(yùn)動,且保持|PA|+|PB|的值不變.
          (1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
          (2)過D點(diǎn)的直線L與曲線E相交于不同的兩點(diǎn)M、N且M在D、N之間,設(shè)
          DM
          DN
          =λ,試確定實(shí)數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點(diǎn),將△BCD沿直線CD翻折,若在翻折過程中存在某個位置,使得CB⊥AD,則x的取值范圍是( 。
          A、(0,
          3
          ]
          B、(
          2
          2
          ,2]
          C、(
          3
          ,2
          3
          ]
          D、(2,4]

          查看答案和解析>>

          同步練習(xí)冊答案